Necessity on the Introduction of UAV and Hyperspectral Image for Fluvial Remote Sensing

하천원격탐사에서의 드론 및 초분광 영상 도입 필요성

  • 유호준 (단국대학교 공과대학 토목환경공학과) ;
  • 김동수 (단국대학교 공과대학 토목환경공학과)
  • Published : 2019.05.15

Abstract

Keywords

References

  1. Carbonneau, P., Fonstad, M. A., Marcus, W. A., and Dugdale, S. J. (2012). Making riverscapes real. Geomorphology, 137(1), 74-86. https://doi.org/10.1016/j.geomorph.2010.09.030
  2. Ahn, C., Cho, B., and Mo, C. (2012). Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging. Journal of the Korean Society for Nondestructive Testing, 32(5), 518-525. https://doi.org/10.7779/JKSNT.2012.32.5.518
  3. Cavalie, O., Doin, M. P., Lasserre, C., and Briole, P. (2007). Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure. Journal of Geophysical Research: Solid Earth, 112(B3).
  4. Chang, J., Chen, Z. L., Wang, Z., Shen, J. M., Chen, Q., Kang, J., Yang, L., Liu, X. W., and Nie, C. X. (2014). Ozonation degradation of microcystin-LR in aqueous solution: intermediates, byproducts and pathways. Water research, 63, 52-61. https://doi.org/10.1016/j.watres.2014.06.007
  5. Chuvieco, E. Fundamentals of satellite remote sensing. CRC press, 2009.
  6. Ciotti, A. M., Cullen, J. J., and Lewis, M. R. (1999). A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color. Journal of Geophysical Research: Oceans, 104(C1), 1559-1578. https://doi.org/10.1029/1998JC900021
  7. Fausch, K. D., Torgersen, C. E., Ba-:ter, C. V., and Li, H. W. "Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes: A continuous view of the river is needed to understand how processes interacting among scales set the contert for stream fishes and their habitat." AIBS Bulletin 52.6 (2002): 483-498.
  8. Javernick, L., Brasington, J., and Caruso, B. (2014). Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology, 213, 166-182. https://doi.org/10.1016/j.geomorph.2014.01.006
  9. Kim, B., and Jo, S. (2017). Assessment of Concrete Efflorescence using Hyperspectral and RGB Images. Korean Society Of Civil Engieers 2017 Convention, 836-837.
  10. Klemas, V. (2011). Remote sensing of algal blooms: an overview with case studies. Journal of Coastal Research, 28(1A), 34-43.
  11. Lee, Coo Lee, S., Bang, G., and Shim, J. (2013). Ertracting Reflectance of Concrete Structures by Terrestrial Hyperspectral Sensors. Journal of the Korean Society of Surveying Photogrammetry, and Cartography Conference, 205-208.
  12. Legleiter, C. Joo and Goodchild, M. F. (2005). Alternative representations of in-stream habitat: classification using remote sensing, hydraulic modeling, and fuzzy logic. International Journal of Geographical Information Science, 19(1), 29-50. https://doi.org/10.1080/13658810412331280220
  13. Legleiter, C. J., and Roberts, D. A. (2009a). A forward image model for passive optical remote sensing of river bathymetry. Remote Sensing of Environment, 113(5), 1025-1045. https://doi.org/10.1016/j.rse.2009.01.018
  14. Legleiter, C. J., Roberts, D. A., and Lawrence, R. L. (2009b). Spectrally based remote sensing of river bathymetry. Earth Surface Processes and Landforms, 34(8), 1039-1059. https://doi.org/10.1002/esp.1787
  15. Legleiter, C. J., Roberts, D. A., Marcus, W. A., & Fonstad, M. A. (2004). Passive optical remote sensing of river channel morphology and in-stream habitat: Physical basis and feasibility. Remote Sensing of Environment, 93(4), 493-510. https://doi.org/10.1016/j.rse.2004.07.019
  16. Lucieer, A. , Jong, S. M. D., and Turner, D. (2014). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38(1), 97-116. https://doi.org/10.1177/0309133313515293
  17. Lyzenga, D. R., Malinas, N. P., and Tanis, F. J. (2006). Multispectral bathymetry using a simple physically based algorithm. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2251-2259. https://doi.org/10.1109/TGRS.2006.872909
  18. Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., and Gabbianelli, G. (2013). Using unrnanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12), 6880-6898. https://doi.org/10.3390/rs5126880
  19. Marcus, W. A., and Fonstad, M. A. Fonstad. "Remote sensing of rivers: the emergence of a subdiscipline in the river sciences." Earth Surface Processes and Landforms 35.15 (2010): 1867-1872. https://doi.org/10.1002/esp.2094
  20. Mertes, L. A., "Remote sensing of riverine landscapes." Freshwater biology 47.4 (2002): 799-816. https://doi.org/10.1046/j.1365-2427.2002.00909.x
  21. Taghizadeh, M., Gowen, A. A., and O'Donnell, C. P. (2011). Comparison of hyperspectral imaging with conventional RGB imaging for quality evaluation of Agaricus bisporus mushrooms. Biosystems engineering, 108(2), 191-194. https://doi.org/10.1016/j.biosystemseng.2010.10.005
  22. Turner, D., Lucieer, A., and Watson, C. (2012). An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote sensing, 4(5), 1392-1410. https://doi.org/10.3390/rs4051392
  23. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M. (2012). 'Structure-from-Motion'photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
  24. Winterbottom, S. J., and Gilvear, D. J. (1997). Quantification of channel bed morphology in gravel-bed rivers using airborne multispectral imagery and aerial photography. Regulated Rivers: Research and Management: An International Journal Devoted to River Research and Management, 13(6), 489-499. https://doi.org/10.1002/(SICI)1099-1646(199711/12)13:6<489::AID-RRR471>3.0.CO;2-X
  25. Xi, H., Hieronymi, M., Rottgers, R., Krasemann, H., and Qiu, Z. (2015). Hyperspectral differentiation of phytoplankton taxonomic groups: a comparison between using remote sensing reflectance and absorption spectra. Remote Sensing, 7(11), 14781-14805 . https://doi.org/10.3390/rs71114781