시간이력을 가진 해저 지반의 운동학적 특성에 따른 지진해일파의 전파

  • Published : 2019.05.15

Abstract

Keywords

References

  1. Bryant, E. (2014). Tsunami. Springer.
  2. Grilli, S. T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J. T. and Watts, P. (2007). Source constraints and model simulation of the December 26, 2004, Indian Ocean Tsunami. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(6), 414-428. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(414)
  3. Gusiakov, V. K. (2009). Tsunami history: recorded. The sea, 15, 23-53.
  4. Hammack, J.L. (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. Journal of Fluid Mechanics, 60(4), 769-799. https://doi.org/10.1017/S0022112073000479
  5. Imai, K., Satake, K. and Furumura, T. (2010) Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough. Earth, Planets and Space, 62(4), 427-432. https://doi.org/10.5047/eps.2009.12.005
  6. Ishii, M., Shearer, P.M., Houston, H. and Vidale, J.E. (2005). Extent, duration and speed of the 2004 Sumatra - Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933. https://doi.org/10.1038/nature03675
  7. Ohmachi, T., Tsukiyama, H. and Matsumoto, H. (2001). Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting. Bulletin of the Seismological Society of America, 91(6), 1898-1909. https://doi.org/10.1785/0120000074
  8. Pringle, W.J., Yoneyama, N. and Mori, N. (2018). Multiscale coupled three-dimensional model analysis of the tsunami flow characteristics around the Kamaishi Bay offshore breakwater and comparisons to a shallow water model. Coastal Engineering Journal, 60(2), 200-224. https://doi.org/10.1080/21664250.2018.1484270
  9. Saito, T. and Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877-888. https://doi.org/10.1111/j.1365-246X.2009.04206.x
  10. Son, S., Lynett., P. and Kim, D.-H. (2011). Nested and multi physics modeling of tsunami evolution from generation to inundation, Ocean Modelling, 38, 96-113. https://doi.org/10.1016/j.ocemod.2011.02.007
  11. Suppasri, A., Imamura, F. and Koshimura, S. (2010). Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coastal Engineering Journal, 52(2), 107-132. https://doi.org/10.1142/S0578563410002142
  12. Suzuki, W., Aoi, S., Sekiguchi, H. and Kunugi, T. (2011). Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9. 0) inverted from strong-motion data. Geophysical Research Letters, 38(7).
  13. Titov, V.V. and Synolakis, C.E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124 (4), 157 - 171. https://doi.org/10.1061/(ASCE)0733-950X(1998)124:4(157)
  14. Wang, X. (2009). User manual for OOMcar version 1. 7 (fIrst draft). Camel University, 65.
  15. Wilson, R.I., Admire, A.R., Borrero, J.C., Dengler, L.A., Legg, M.R., Lynett, P. McCrink, T.P., Miller, K.M., Ritchie, A., Sterling, K. and Whitmore, P.M. (2013). Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA). Pure and Applied Geophysics, 170(6-8), 1127-1147. https://doi.org/10.1007/s00024-012-0527-z