DOI QR코드

DOI QR Code

경피 약물전달을 위한 HA-PLGA 나노입자가 저장된 젤라틴 나노섬유 복합체 개발

HA-PLGA Nanoparticle-Incorporated Gelatin Nanofibers for Transdermal Drug Delivery

  • 이소윤 (부산대학교 유기소재시스템공학과) ;
  • 정우엽 (부산대학교 유기소재시스템공학과) ;
  • 이진홍 (부산대학교 유기소재시스템공학과) ;
  • 김한성 (부산대학교 유기소재시스템공학과) ;
  • 김기수 (부산대학교 유기소재시스템공학과)
  • Lee, So Yun (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University) ;
  • Jeong, Woo Yeup (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University) ;
  • Lee, Jin Hong (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University) ;
  • Kim, Han Seong (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University) ;
  • Kim, Ki Su (Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University)
  • 투고 : 2019.05.10
  • 심사 : 2019.06.18
  • 발행 : 2019.06.30

초록

In recent years, transdermal drug delivery system (TDDS) has emerged as an alternative to needle injection. TDDS offers various benefits including being noninvasive and encouraging patient compliance; however, the skin barrier, stratum corneum, prevents sufficient penetration of drugs through the skin. In this work, we have designed hyaluronic acid-poly(lactic-co-glycolic acid) nanoparticle (HA-PLGA NP)-incorporated gelatin nanofiber (GE NF/HA-PLGA) complexes for the sustained release of drugs and to avoid drug degradation in TDDS. The HA-PLGA NPs were prepared by water-in-oil-in-water (W/O/W) solvent evaporation method, while the GE NFs were fabricated by electrospinning. The successful formation of HA-PLGA NPs were confirmed by proton nuclear magnetic resonance, transmission electron microscopy, and dynamic light scattering, while that of the NFs were confirmed by field emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The results of in vitro release tests reveal that the GE/HA-PLGA complex shows delayed and extended release of drugs. The histological analysis demonstrates that the HA-PLGA NPs can be released from the GE NFs and penetrate the skin. These results indicate the feasibility of using GE/HA-PLGA complexes as a suitable candidate for novel TDDS.

키워드

참고문헌

  1. M. R. Prausnitz and R. Langer, "Transdermal Drug Delivery", Nat. Biotechnol., 2008, 26, 1261-1268. https://doi.org/10.1038/nbt.1504
  2. A. Z. Alkilani, M. T. C. McMrudden, and R. F. Donnelly, “Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum”, Pharmaceutics, 2015, 7, 438-470. https://doi.org/10.3390/pharmaceutics7040438
  3. S. Bjorklund, J. Engblom, K. Thuresson, and E. Sparr, "A Water Gradient Can be Used to Regulate Drug Transport Across Skin", J. Controlled Release., 2010, 143, 191-200. https://doi.org/10.1016/j.jconrel.2010.01.005
  4. B. C. Palmer and L. A. DeLouise, “Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting”, Molecules, 2016, 21, 1719. https://doi.org/10.3390/molecules21121719
  5. H. Marwah, T. Garg, A. K. Goyal, and G. Rath, “Permeation Enhancer Strategies in Transdermal Drug Delivery”, Drug Deliv., 2016, 23, 564-578. https://doi.org/10.3109/10717544.2014.935532
  6. K. Ita, "Recent Progress in Transdermal Sonophoresis", Pharm. Dev. Technol., 2017, 22, 458-466. https://doi.org/10.3109/10837450.2015.1116566
  7. K. Ita, "Transdermal Iontophoretic Drug Delivery: Advances and Challenges", J. Drug. Target., 2016, 24, 386-391. https://doi.org/10.3109/1061186X.2015.1090442
  8. M. R. Prausnitz, "Microneedles for Transdermal Drug Delivery", Adv. Drug Deliv., 2004, 56, 581-587. https://doi.org/10.1016/j.addr.2003.10.023
  9. G. Huang and H. Huang, “Application of Hyaluronic Acid as Carriers in Drug Delivery”, Drug Deliv., 2018, 25, 766-772. https://doi.org/10.1080/10717544.2018.1450910
  10. K. S. Kim, H. Kim, Y. Park, W. H. Kong, S. W. Lee, S. J. J. Kwok, S. K. Hahn, and S. H. Yun, "Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant", Adv. Funct. Mater., 2016, 26, 2512-2522. https://doi.org/10.1002/adfm.201504879
  11. J. H. Lee, H. S. Jeong, D. H. Lee, S. Beack, T. Kim, G.-H. Lee, W. C. Park, C. Kim, K. S. Kim, and S. K. Hahn, "Targeted Hyaluronate-Hollow Gold Nanosphere Conjugate for AntiObesity Photothermal Lipolysis", ACS Biomater. Sci. Eng., 2017, 3, 3646-3653. https://doi.org/10.1021/acsbiomaterials.7b00549
  12. D. N. Kapoor, A. Bhatia, R. Kaur, R. Sharma, G. Kaur, and S. Dhawan, "PLGA: a Unique Polymer for Drug Delivery", Ther. Deliv., 2015, 6, 41-58. https://doi.org/10.4155/tde.14.91
  13. H. Lee, C. H. Ahn, and T. G. Park, "Poly[lactic-co-(glycolic acid)]-Grafted Hyaluronic Acid Copolymer Micelle Nanoparticles for Target-Specific Delivery of Doxorubicin", Macromol. Biosci., 2009, 9, 336-342. https://doi.org/10.1002/mabi.200800229
  14. B. B. S. Cerqueira, A. Lasham, A. N. Shelling, and R. Al- Kassas, "Development of Biodegradable PLGA Nanoparticles Surface Engineered with Hyaluronic Acid for Targeted Delivery of Paclitaxel to Triple Negative Breast Cancer Cells", Mater. Sci. Eng., C, 2017, 76, 593-600. https://doi.org/10.1016/j.msec.2017.03.121
  15. A. K. Yadav, A. Agarwal, G. Rai, P. Mishra, S. Jain, A. K. Mishra, H. Agrawal, and G. P. Agrawal, "Development and Characterization of Hyaluronic Acid Decorated PLGA Nanoparticles for Delivery of 5-fluorouracil", Drug Deliv., 2010, 17, 561-572. https://doi.org/10.3109/10717544.2010.500635
  16. N. Sahoo, R. K. Sahoo, N. Biswas, A. Guha, and K. Kuotsu, "Recent Advancement of Gelatin Nanoparticles in Drug and Vaccine Delivery", Int. J. Biol. Macromol., 2015, 81, 317-331. https://doi.org/10.1016/j.ijbiomac.2015.08.006
  17. J. B. Rose, S. Pacelli, A. J. E. Haj, H. S. Dua, A. Hopkinson, L. J. White, and F. R. A. J. Rose, “Gelatin-Based Materials in Ocular Tissue Engineering”, Materials, 2014, 7, 3106-3135. https://doi.org/10.3390/ma7043106
  18. B. E. Hosseinzadeh, M. Pedram, A. H. Zarmi, S. S. Kordestani, M. Rasti, Z. B. M. Hosseini, and M. M. Derikvand, "In vivo Evaluation of Gelatin/Hyaluronic Acid Nanofiber as Burnwound Healing and Its Comparison with ChitoHeal Gel", Fiber. Polym., 2016, 17, 820-826. https://doi.org/10.1007/s12221-016-6259-4
  19. J. Li, A. He, J. Zheng, and C. C. Han, “Gelatin and Gelatin-Hyaluronic Acid Nanofibrous Membranes Produced by Electrospinning of Their Aqueous Solutions”, Biomacromolecules, 2006, 7, 2243-2247. https://doi.org/10.1021/bm0603342
  20. Y. Z. Zhang, J. Venugopal, Z.-M. Huang, C. T. Lim, and S. Ramakrishna, “Crosslinking of the Electrospun Gelatin Nanofibers”, Polymer, 2006, 47, 2911-2917. https://doi.org/10.1016/j.polymer.2006.02.046
  21. J. H. Ko, H. Y. Yin, J. An, and D. J. Chung, "Characterization of Cross-linked Gelatin Nanofibers through Electrospinning", Macromol. Res., 2010, 18, 137-143. https://doi.org/10.1007/s13233-009-0103-2
  22. I. Takeuchi, Y. Hida, and K. Makino, "Minoxidil-encapsulated Poly(L-lactide-co-glycolide) Nanoparticles with Hair Follicle Delivery Properties Prepared Using W/O/W Solvent Evaporation and Sonication", Biomed. Mater. Eng., 2018, 29, 217-228.
  23. K. J. Reddy and K. T. Karunakaran, "Purification and Characterization of Hyaluronic Acid Produced by Streptococcus zooepidemicus Strain 3523-7", J. BioSci. Biotech., 2013, 2, 173-179.
  24. R. Singh, P. Kesharwani, N. K. Mehra, S. Singh, S. Banerjee, and N. K. Jain, "Development and Characterization of Folate Anchored Saquinavir Entrapped PLGA Nanoparticles for Anti-tumor Activity", Drug. Dev. Ind. Pharm., 2015, 41, 1888-1901. https://doi.org/10.3109/03639045.2015.1019355
  25. Q. Xing, K. Yates, C. Vogt, Z. Qian, M. C. Frost, and F. Zhao, “Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal”, Nature, 2014, 4, 4706.