Fig. 1. Energy band diagram of source-channel junction under gate voltage biased. 그림 1. 전압이 인가되었을 때 소스-체널 정합의 에너지 벤드 다이어그램
Fig. 2. The cross sectional view of the fabricated TFET structure. 그림 2. TFET 구조의 단면도
Fig. 3. Subthreshold slope of measured samples. 그림 3. 측정된 샘플의 subthreshodd slope
Fig. 4. Normalized power spectral density(SID) of LFN at 100 Hz for (a) sample 1, (b) sample 2, (c) sample 3, and (d) sample 4. 그림 4. 100 Hz 지점에서 저주파 노이즈의 정규화된 크기 (a) 샘플 1, (b) 샘플 2, (c) 샘플 3, (d) 샘플 4
Fig. 5. Normalized SID at 100 Hz with ID = 100 nA for (a) sample 3 and (b) sample 4. 그림 5. ID = 100 nA, 100 Hz 조건에서 정규화된 노이즈의 크기 (a) 샘플 3, (b) 샘플 4
Fig. 6. Normalized SID of sample 3, (a) before post metal annealing and (b) after post metal annealing. 그림 6. 샘플 3의 노이즈의 정규화된 크기 (a) post metal annealing 전, (b) post metal annealing 후
Table 1. The temperature, time, gas, and pressure conditions of post metal annealing. 표 1. Post metal annealing의 온도, 시간, 가스종류, 압력 조건표
Table 2. The biased conditions of DC characteristics and noise measurement. 표 2. DC 특성과 노이즈 측정 조건
Table 3. Comparing subthreshold slope of TFET before and after post metal annealing with the temperature split. 표 3. Post metal annealing 공정 전. 후의 subthreshlod slope 비교
Table 4. Average slope of the LFN as a function of temperature. 표 4. 온도변화에 따른 저주파 노이즈의 평균 기울기
참고문헌
- K. P. Cheung. "On the 60 mV/dec@ 300 K limit for MOSFET subthreshold swing," Proceedings of 2010 International Symposium on VLSI Technology, System and Application. pp.72-73, 2010. DOI: 10.1109/VTSA.2010.5488941
- D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, & H. S. P. Wong, "Device scaling limits of Si MOSFETs and their application dependencies," Proceedings of the IEEE, vol.89, no.3, pp.259-288, 2001. DOI: 10.1109/5.915374
- D. Jimenez, J. J. Saenz, B. Iniguez, J. Sune, L. F. Marsal, & J. Pallares, "Modeling of nanoscale gate-all-around MOSFETs," IEEE Electron device letters, vol.25, no.5, pp.314-316, 2004. DOI: 10.1109/LED.2004.826526
- B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C. Y. Yang, & J. Bokor, "FinFET scaling to 10 nm gate length," In Digest. International Electron Devices Meeting, pp.251-254. 2002. DOI: 10.1109/IEDM.2002.1175825
- S. M. Turkane, & A. K. Kureshi, "Review of tunnel field effect transistor (TFET)," International Journal of Applied Engineering Research, vol.11, no.7, pp.4922-4929, 2016.
- P. Chuang, S. C. Ho, L. W. Smith, F. Sfigakis, M. Pepper, C. H. Chen & G. A. C. Jones, "All-electric all-semiconductor spin field-effect transistors," Nature nanotechnology, vol.10, no.1, pp.35, 2015. https://doi.org/10.1038/nnano.2014.296
- Q. Huang, R. Huang, C. Chen, C. Wu, J. Wang, C. Wang & Y. Wang, "Deep insights into low frequency noise behavior of tunnel FETs with source junction engineering," In 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers pp.1-2, 2014. DOI: 10.1109/VLSIT.2014.6894371
- R. Choi, K. Onishi, C. S. Kang, H. J. Cho, Y. H. Kim, S, Krishnan & J. C. Lee, "Effects of deuterium anneal on MOSFETs with HfO 2 gate dielectrics," IEEE Electron Device Letters, vol.24, no.3, pp.144-146, 2003. DOI: 10.1109/LED.2003.809531
- Y. Qiu, R. Wang, Q. Huang & R. Huang, "A comparative study on the impacts of interface traps on tunneling FET and MOSFET," IEEE Transactions on Electron Devices, vol.61, no.5, pp.1284-1291, 2014. DOI: 10.1109/TED.2014.2312330