Fig. 1. Temperature dependence of QTLW γ(T) of Si, with λ=220, 394, 513, 550 and 720 μm (from the top line to the bottom line). 그림 1. 파장 λ=220, 394, 513, 550 and 720 μm에서 Si의 온도에 따른 QTLW의 값(γ(T))
Fig. 2. Magnetic field dependence of QTLW γ(B) of Si, with λ=220, 394, 513, 550 and 720 μm(from the top line) 그림 2. 파장 λ=220, 394, 513, 550 and 720 μm에서 Si의 자기장에 따른 QTLW의 값(γ(B))
Fig. 3. Comparisons of the temperature dependence of QTLW of Si, γ(T)total, γ(T)emandγ(T)ab with λ=394μm. 그림 3. 파장 λ=394μm에 있어 Si의 QTLW의 값 γ(T)total, γ(T)em 및 γ(T)ab의 온도의존성
Fig. 4. Comparisons of the magnetic field dependence of QTLW of Si, γ(B)total, γ(B)em and γ(B)ab at T=50K. 그림 4. 온도 T=50K에서 Si의 QTLW의 값, γ(B)ab 및 γ(B)total, γ(B)em의 자기장 의존성
Fig. 5. The Magnetic Field dependence of normalized P(B) (QTLS) of Si with λ=394 μm the at T=50,70,90,120 and 210K. (from the bottom line to top) 그림 5. 온도 T=50, 70, 90, 120 및 210K에서 파장 λ=393μm에대한 Si의 QTLS의 흡수력 P(B)의 자기장 의존성
Fig. 6. The relativity frequency dependence of (QTLS) P(Δω) of Si and the magnetic field dependence of the absorption power, P(B) (QTLS) with λ=220, 394, 513, 550 and 550 μm at T=50K. 그림 6. 최대 흡수 전력의 자기장 의존성과 온도 T=50K에서 λ=220, 394, 513, 550 및 720μm 인 Si의 흡수력(QTLS) P(Δω)의 상대 주파수 의존성
Table 1. Material constant of Si. 표 1. Si의 물질 상수
References
- C. S. Ting, S. C. Ying and J. J. Quinn, "Theory of cyclotron resonance of interacting electrons in a semiconducting surface inversion layer," Physical Review B, vol.16, no.12, pp. 5394-5404, 1977. DOI: 10.1103/PhysRevB.16.5394
- Wu Xiaoguang, F. M. Peeters and J. T. Devreese, "Theory of the cyclotron resonance spectrum of a polaron in two dimensions," Physical Review B, vol.34, no.12, pp.8800-8809, 1986. DOI: 10.1103/PhysRevB.34.8800
- P. Grigoglini and G. P. Parravidini, "Phonon thermal baths: A treatment in terms of reduced models," Physical Review B, vol.25, no.8, pp.5180-5187, 1982. DOI: 10.1103/PhysRevB.25.5180
- J. R. Barker, "Quantum transport theory of high-field conduction in semiconductors," Journal of Physics C: Solid State Physics, vol.6, no.17, pp.2633-2684, 1973. DOI: 10.1088/0022-3719 /6/17/009
- R. Kubo, "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems," Journal of the Physical Society of Japan, vol.12, no.6, pp.570-586, 1957. DOI: 10.1143/ JPSJ.12.570
- H. Mori, "Transport, Collective Motion, and Brownian Motion," Progress of Theoretical Physics, vol.33, no.3, pp.423-455, 1965. DOI: 10.1143/PTP.33.423
- K. Nagano, T. Karasudani and H. Okamoto, "Reduced Equations of Motion for Generalized Fluxes and Forces in the Continued-Fraction Expansion," Progress of Theoretical Physics, vol.63, no.6, pp.1904-1916, 1980. DOI: 10.1143/ PTP.63.1904
- R. Zwanzig, "Theoretical basis for the Rouse-Zimm model in polymer solution dynamics," The Journal of Chemical Physics, vol.60, no.7, pp.2717-2720, 1960. DOI: 10.1063/1.1681433
- V. M. Kenkre, "Integrodifferential Equation for Response Theory," PHYSICAL REVIEW A, vol.4, no.6, pp.2327-2330, 1971. DOI: 10.1103/Phys.,Rev,A.4.2327
- S. G. Jo, N. L. Kang, Y. J. Cho, S. D. Choi. "Modeling of the Cyclotron Transition Theory for Quasi-2-Dimensional Electron-Systems by the Isolation-Projection Technique," J. Korea Phys. Soc. 30, pp.103-110, 1997.
- J. Y. Sug and S. D. Choi. "Quantum transport theory based on the equilibrium density projection technique," PHYSICAL REVIEW E, vol.55, no.1, pp.314-321. 1997. DOI: 10.1103/PhysRevE.55.314
- J. Y. Sug and S. D. Choi. "Quantum transition processes in deformation potential interacting systems using the equilibrium density projection technique," PHYSICAL REVIEW B, vol.64, no.23, pp.235210, 2001. DOI: 10.1103/PhysRevB.64.235210
- H. Kobori, T. Ohyama, and E. Otsuka, "Line-Width of Quantum Limit Cyclotron Resonance. I. Phonon Scatterings in Ge, Si, CdS and InSb," Journal fo the Physical Society of Japan, vol.59, no.6, pp.2141-2163, 1989. DOI: 10.1143/JPSJ.59.2141
- J. Y. Sug, S. H. Lee, J. J. Kim, "The magnetic field dependence of the deformation potential materials in the square well confinement potential," Central European Journal of Physics, vol.6, no.4, pp.812-824, 2008. DOI: 10. 2478/s11534-008-0114-1 https://doi.org/10.2478/s11534-008-0114-1
- J. Y. Sug, S. H. Lee, J. Y. Choi, G. Sa-Gong. and J. J. Kim, "Magnetic Properties of Optical Quantum Transition Line Shapes and Line Widths of Electron-Piezoelectric Potential Phonon Interacting Materials under Circularly Oscillating Fields," Japanese Journal of Applied Physics, vol.47, no.9, pp.7757-7763, 2008. DOI: 10.1143/JJAP.47.7757
- J. Y. Sug, S. H. Lee and J. Y. Choi, "The temperature dependence of quantum optical transition properties of GaN and GaAs in a infinite square well potential system," Journal of the Korean Physical Society, vol.54, no.4, pp. 1015-1019, 2009. DOI: 10.3938/jkps.57.1015
- C. M. Wolfe and G. E. Stillman Processes, Physical Properties of Semiconductors, Prentice-Hall, 1989.
- D. K. Ferry Process, "Semiconductors," Macmillan, New York, 1991.