DOI QR코드

DOI QR Code

Evaluation of Lateral Pile Behavior under Cyclic Loading by Centrifuge Tests

원심모형 실험을 이용한 반복하중을 받는 모노파일 거동 평가

  • Lee, Myungjae (Railroad Structure Research Team, Korea Railroad Research Institute) ;
  • Yoo, Mintaek (Railroad Structure Research Team, Korea Railroad Research Institute) ;
  • Park, Jeongjun (Railroad Structure Research Team, Korea Railroad Research Institute) ;
  • Min, Kyungchan (CHUN KYUNG Industrial Co., Ltd)
  • Received : 2019.05.07
  • Accepted : 2019.05.26
  • Published : 2019.06.30

Abstract

This study investigated the lateral behavior of monopile embedded in the dry sand through cyclic lateral loading test using a centrifuge test. The sand sample for the experiment was the dry Jumunjin standard sand at 80% relative density and the friction angle of $38^{\circ}$. In the experimental procedure, firstly, it was determined the static lateral bearing capacity by performing the static lateral loading test to decide the cyclic load. This derived static lateral bearing capacity values of 30%, 50%, 80%, 120% were determined as the cyclic lateral load, and the number of cycle was performed 100 times. Through the results, the experiment cyclic p-y curve was calculated, and the cyclic p-y backbone curve by depth was derived using the derived maximum soil resistance point by the load. The initial slope at the same depth was underestimated than API (1987) p-y curves, and the ultimate soil resistance was overestimated than API (1987) p-y curves. In addition, the result of the comparison with the suggested dynamic p-y curve was that the suggested dynamic p-y curve was overestimated than the cyclic p-y backbone curve on the initial slope and soil resistance at the same depth. It is considered that the p-y curve should be applied differently depending on the loading conditions of the pile.

본 연구는 원심모형실험을 이용해 건조 사질토 지반에 근입된 모노파일의 수평 반복하중에 대한 거동을 연구하였다. 실험에 사용된 지반 시료는 상대밀도 80%에서 마찰각이 $38^{\circ}$인 건조 주문진 표준사를 사용했다. 실험 과정은 우선 반복하중의 크기를 결정하기 위해 정적 하중 실험을 수행하여 극한하중을 결정하였다. 이를 통해 도출된 극한 하중 값의 30%, 50%, 80%, 120%을 반복하중의 값으로 결정하였고, 반복횟수는 100회로 수행되었다. 이 결과를 통해 실험 반복하중 p-y 곡선을 산정하였고 도출된 하중 별 최대 지반반력점들을 이용하여 깊이 별 반복하중 p-y 중추곡선을 도출하였다. 이를 기존 p-y 곡선과 비교 결과, 동일 깊이에서 초기기울기가 API(1987) p-y 곡선보다 과소평가 되었으며, 극한지반반력은 과대평가되었다. 또한, 동적 p-y 곡선과 비교하였을 때, 동일 깊이에서의 반복하중 p-y 중추곡선의 초기기울기와 지반반력이 작게 평가되었다. 이는 말뚝이 받는 하중 조건에 따라 p-y 곡선을 다르게 적용해야 할 것으로 판단된다.

Keywords

GJBGC4_2019_v35n6_39_f0001.png 이미지

Fig. 1. Soil box (a) Static loading test, (b) Cyclic loading test

GJBGC4_2019_v35n6_39_f0002.png 이미지

Fig. 2. Jumunjin sand particle size distribution

GJBGC4_2019_v35n6_39_f0003.png 이미지

Fig. 3. Static loading test cross section diagram

GJBGC4_2019_v35n6_39_f0004.png 이미지

Fig. 4. Cyclic loading system

GJBGC4_2019_v35n6_39_f0005.png 이미지

Fig. 5. Cyclic loading test cross section diagram

GJBGC4_2019_v35n6_39_f0006.png 이미지

Fig. 6. Load-pile displacement curve

GJBGC4_2019_v35n6_39_f0007.png 이미지

Fig. 7. Comparison of static p-y curve with the cyclic p-y curves at 2 m depth

GJBGC4_2019_v35n6_39_f0008.png 이미지

Fig. 8. Ncycle = 100, experimental cyclic p-y curve

GJBGC4_2019_v35n6_39_f0009.png 이미지

Fig. 9. Cyclic p-y curve by load (a) depth = 2 m, (b) depth = 5 m, (c) depth = 7 m

GJBGC4_2019_v35n6_39_f0010.png 이미지

Fig. 10. Cyclic p-y backbone curve with cycle number at depth of 2 m

GJBGC4_2019_v35n6_39_f0011.png 이미지

Fig. 11. Ncycle = 100, cyclic p–y backbone curve

GJBGC4_2019_v35n6_39_f0012.png 이미지

Fig. 12. Comparison with preceded p-y curve (API p-y curve, dynamic p-y curve (Yoo et al., 2013) (a) Depth = 2 m, (b) Depth = 5 m, (c) Depth = 7 m

Table 2. Pile specification

GJBGC4_2019_v35n6_39_t0001.png 이미지

Table 1. Properties of soil

GJBGC4_2019_v35n6_39_t0002.png 이미지

Table 3. Static loading test conditions (Prototype scale)

GJBGC4_2019_v35n6_39_t0003.png 이미지

Table 4. Cyclic loading test conditions (Prototype scale)

GJBGC4_2019_v35n6_39_t0004.png 이미지

Table 5. Suggested dynamic p-y backbone curve by dynamic centrifuge test (Yoo et al., 2013)

GJBGC4_2019_v35n6_39_t0005.png 이미지

References

  1. Achmus, M., Kuo, Y. S., and Abdel-Rahman, K. (2009), "Behavior of Monopile Foundations under Cyclic Lateral Load", Computers and Geotechnics, Vol.36, No.5, pp.725-735. https://doi.org/10.1016/j.compgeo.2008.12.003
  2. Alderlieste, E. A. (2011), "Experimental Modelling of Lateral Loads on Large Diameter Mono-Pile Foundations in Sand", Master's thesis, Delft University of Technology, Delft, Netherland.
  3. American Petroleum Institute (API), (1987), "Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms", API Recommendation Practice 2A (RP 2A), 17th edition.
  4. Barton, Y., Finn, W., Parry, R., and Towhata, I. (1983), "Lateral Pile Response and Py Curves from Centrifuge Tests", Offshore Technology Conference.
  5. Choo, Y. W. and Kim, D. (2015), "Experimental Development of the p-y Relationship for Large-Diameter Offshore Monopiles in Sands: Centrifuge Tests", Journal of Geotechnical and Geoenvironmental Engineering, Vol.142, No.1, 04015058. https://doi.org/10.1061/(asce)gt.1943-5606.0001373
  6. Cox, W. R., Reese, L. C., and Grubbs, B. R. (1974), "Field testing of laterally loaded piles in sand", Offshore Technology Conference.
  7. Dou, H. and Byrne, P. M. (1996), "Dynamic Response of Single Piles and Soil Pile Interaction", Canadian Geotechnical Journal, Vol.33, No.1, pp.80-96. https://doi.org/10.1139/t96-025
  8. Fan, C. C. and Long, J. H. (2005), "Assessment of Existing Methods for Predicting Soil Response of Laterally Loaded Piles in Sand", Computers and Geotechnics, Vol.32, No.4, pp.274-289. https://doi.org/10.1016/j.compgeo.2005.02.004
  9. Finn, W. L. and Dowling, J. (2015), "Modelling Effects of Pile Diameter", Canadian Geotechnical Journal, Vol.53, No.1, pp.173-178. https://doi.org/10.1139/cgj-2015-0119
  10. Gerber, T. M. and Rollins, K. M. (2008), "Cyclic py curves for a pile in cohesive soil", Geotechnical Earthquake Engineering and Soil Dynamics IV, pp.1-10.
  11. Kim, K., Nam, B. H., and Youn, H. (2015), "Effect of Cyclic Loading on the Lateral Behavior of Offshore Monopiles Using the Strain Wedge Model", Mathematical Problems in Engineering, 2015.
  12. Korean Society of Civil Engineers (2008), "Bridge Design Criteria", p.750 (in Korean)
  13. Kondner, R. L. (1963), "Hyperbolic Stress-strain Response: Cohesive Soils", Journal of the Soil Mechanics and Foundations Division, Vol.89, No.1, pp.115-144. https://doi.org/10.1061/JSFEAQ.0000479
  14. Lesny, K. and Wiemann, J. (2006), "Finite element modelling of large diameter monopiles for offshore wind energy converters", Geo Congress.
  15. Li, Z., Haigh, S., and Bolton, M. (2010), "Centrifuge Modelling of Mono-pile under Cyclic Lateral Loads", Physical Modelling in Geotechnics, pp.965-970.
  16. Moller, I. F. and Christiansen, T. (2011), "Laterally Loaded Monopile in Dry and Saturated Sand-Static and Cyclic Loading", Master Project, June.
  17. Matlock, H. (1970), "Correlations for design of laterally loaded piles in soft clay", Offshore Technology in Civil Engineering's Hall of Fame Papers from the Early Years, pp.77-94.
  18. Ovesen, N. K. (1979), "The Scaling Law Relationship", Proceedings of the 7th European conference on soil mechanics and foundation engineering, 4, pp.319-323.
  19. Peng, J. R., Clarke, B., and Rouainia, M. (2006), "A Device to Cyclic Lateral Loaded Model Piles", Geotech. Test. J., Vol.29, No.4, pp.1-7.
  20. Peralta, P. (2010), "Investigations on the Behavior of Large Diameter Piles under Long-Term Lateral Cyclic Loading in Cohesionless Soil", Ph. D tesis, Leibniz University, Germany.
  21. Reese, L. C., Cox, W. R., and Koop, F. D. (1974), "Analysis of laterally loaded piles in sand", Offshore Technology in Civil Engineering Hall of Fame Papers from the Early Years, pp.95-105.
  22. Remaud, D. (1999), "Piles under lateral forces: experimental study of piles group", University of Nantes, France.
  23. Ting, J. M., Kauffman, C. R., and Lovicsek, M. (1987), "Centrifuge Static and Dynamic Lateral Pile behaviour", Canadian Geotechnical Journal, Vol.24, No.2, pp.198-207. https://doi.org/10.1139/t87-025
  24. Yang, E. K., Jeong, S. S., Kim, J. H., and Kim, M. M. (2009), "Dynamic P-Y Backbone Curves from 1-G Shaking Table Tests", Proc 88th Transport Res Board Ann Mtg, Washington DC, CD-ROM.
  25. Yoo, M. T., Choi, J. I., Han, J. T., and Kim, M. M. (2013), "Dynamic P-Y Curves for Dry Sand from Centrifuge Tests", Journal of Earthquake Engineering, Vol.17, No.7, pp.1082-1102. https://doi.org/10.1080/13632469.2013.801377
  26. Yoo, M. T. and Kwon, S. Y. (2018), "Comparison of Lateral Pile behavior under Static and Dynamic Loading by Centrifuge Tests", Journal of the Korean Geotechnical Society, Vol.34, No.7, pp. 51-58. https://doi.org/10.7843/KGS.2018.34.7.51

Cited by

  1. 조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가 vol.35, pp.11, 2019, https://doi.org/10.7843/kgs.2019.35.11.97