DOI QR코드

DOI QR Code

Immobilization and Performance of Penicillin G Acylase on Magnetic Ni0.7Co0.3Fe2O4@SiO2-CHO Nanocomposites

  • Lv, Zhixiang (Department of Pharmacy, Danyang People's Hospital) ;
  • Yu, Qingmei (School of Pharmacy, Jiangsu University) ;
  • Wang, Zhou (College of Vanadium and Titanium, Panzhihua University) ;
  • Liu, Ruijiang (School of Pharmacy, Jiangsu University)
  • 투고 : 2019.03.11
  • 심사 : 2019.05.16
  • 발행 : 2019.06.28

초록

Magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4$ nanoparticles that were prepared via the rapid combustion process were functionalized and modified to obtain magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4@SiO_2-CHO$ nanocomposites, on which penicillin G acylase (PGA) was covalently immobilized. Selections of immobilization concentration and time of fixation were explored. Catalytic performance of immobilized PGA was characterized. The free PGA had greatest activity at pH 8.0 and $45^{\circ}C$ while immobilized PGA's activities peaked at pH 7.5 and $45^{\circ}C$. Immobilized PGA had better thermal stability than free PGA at the range of $30-50^{\circ}C$ for different time intervals. The activity of free PGA would be 0 and that of immobilized PGA still retained some activities at $60^{\circ}C$ after 2 h. $V_{max}$ and $K_m$ of immobilized PGA were 1.55 mol/min and 0.15 mol/l, respectively. Free PGA's $V_{max}$ and $K_m$ separately were 0.74 mol/min and 0.028 mol/l. Immobilized PGA displayed more than 50% activity after 10 successive cycles. We concluded that immobilized PGA with magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4@SiO_2-CHO$ nanocomposites could become a novel example for the immobilization of other amidohydrolases.

키워드

참고문헌

  1. Cheng SW, Song QX, Wei DZ, Gao BX. 2017. High-level production penicillin G acylase from Alcaligenes faecalis in recombinant Escherichia coli with optimization of carbon sources. Enzyme Microb. Tech. 41: 326-330. https://doi.org/10.1016/j.enzmictec.2007.02.011
  2. Yang L, Guo YL, Zhan WC, Guo Y, Wang YS, Lu GZ. 2014. One-pot synthesis of aldehyde-functionalized mesoporous silica-$Fe_3O_4$ nanocomposites for immobilization of penicillin G acylase. Micropor. Mesopor. Mat. 197: 1-7. https://doi.org/10.1016/j.micromeso.2014.05.044
  3. Grulich M, Stepanek V, Kyslik P. 2013. Perspectives and industrial potential of PGA selectivity and promiscuity. Biotechnol. Adv. 31: 1458-1472. https://doi.org/10.1016/j.biotechadv.2013.07.005
  4. Jiang TY, Shen SY, Wang T, Li MR, He BF, Mo R. 2017. A substrate-selective enzyme-catalysis assembly strategy for oligopeptide hydrogel-assisted combinatorial protein delivery. Nano Lett. 17: 7447-7454. https://doi.org/10.1021/acs.nanolett.7b03371
  5. Jiang YJ, Zhai JQ, Zhou LY, He Y, Ma L, Gao J. 2018. Enzyme@silica hybrid nanoflowers shielding in polydopamine layer for the improvement of enzyme stability. Biochem. Eng. J. 132: 196-205. https://doi.org/10.1016/j.bej.2018.01.028
  6. Rosenthal A, Rauch S, Eichhorn KJ, Stamm M, Uhlmann P. 2018. Enzyme immobilization on protein-resistant PNIPA Am brushes: impact of biotin linker length on enzyme amount and catalytic activity. Colloids Surf B Biointerfaces 171: 351-357. https://doi.org/10.1016/j.colsurfb.2018.07.047
  7. Gao H, Li JL, Sivakumar D, Kim TS, Patel SKS, Kalia VC, et al. 2019. NADH oxidase from Lactobacillus reuteri: A versatile enzyme for oxidized cofactor regeneration. Int. J. Biol. Macromol. 123: 629-636. https://doi.org/10.1016/j.ijbiomac.2018.11.096
  8. Drout RJ, Robison L, Farha OK. 2019. Catalytic applications of enzymes encapsulated in metal-organic frameworks. Coordin. Chem. Rev. 381: 151-160. https://doi.org/10.1016/j.ccr.2018.11.009
  9. Bilal M, Zhao YP, Rasheed T, Iqbal HMN. 2018. Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int. J. Biol. Macromol. 120: 2530-2544. https://doi.org/10.1016/j.ijbiomac.2018.09.025
  10. Fang Z, Sha C, Peng Z, Zhang J, Du GC. 2019. Protein engineering to enhance keratinolytic protease activity and excretion in Escherichia coli and its scale-up fermentation for high extracellular yield. Enzyme Microb. Techcnol. 121: 37-44. https://doi.org/10.1016/j.enzmictec.2018.11.003
  11. Akbarian M, Ghasemi Y, Uversky VN, Yousefi R. 2018. Chemical modifications of insulin: finding a compromise between stability and pharmaceutical performance. Int. J. Pharm. 547: 450-468. https://doi.org/10.1016/j.ijpharm.2018.06.023
  12. Bilal M, Rasheed T, Zhao YP, Iqbal HMN, Cui JD. 2018. "Smart" chemistry and its application in peroxidase immobilization using different support materials. Int. J. Biol. Macromol. 119: 278-290. https://doi.org/10.1016/j.ijbiomac.2018.07.134
  13. Balke K, Beier A, Bornscheuer UT. 2018. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnol. Adv. 36: 247-263. https://doi.org/10.1016/j.biotechadv.2017.11.007
  14. Kajiwara S, Komatsu K, Yamada R, Matsumoto T, Yasuda M, Ogino H. 2019. Improvement of the organic solvent stability of a commercial lipase by chemical modification with dextran. Biochem. Eng. J. 142: 1-6. https://doi.org/10.1016/j.bej.2018.11.003
  15. Patel SKS, Otari SV, Li JL, Kim DR, Kim SC, Cho BK, et al. 2018. Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J. Hazard. Mater. 347: 442-450. https://doi.org/10.1016/j.jhazmat.2018.01.003
  16. Lau YJ, Lau SY, Mubarak NM, Bing CH, Pan S, Danquah MK, et al. 2019. An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. J. Environ. Chem. Eng. 7: 102961. https://doi.org/10.1016/j.jece.2019.102961
  17. Han J, Rong JH, Wang Y, Liu Q, Tang X, Li C, Ni L. 2018. Immobilization of cellulase on thermo-sensitive magnetic microspheres: improved stability and reproducibility. Bioprocess Biosyst. Eng. 41: 1051-1060. https://doi.org/10.1007/s00449-018-1934-z
  18. Liu DM, Chen J, Shi YP. 2018. A dvances on methods and easy separated support materials for enzymes immobilization. Trac-trend. Anal. Chem. 102: 332-342. https://doi.org/10.1016/j.trac.2018.03.011
  19. Otari SV, Patel SKS, Kim SY, Haw JR, Kalia VC, Kim IW, et al. 2018. Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J. Microbiol. 56: 105-108..
  20. Wang YJ, Wang Q, Song XP, Cai JJ. 2019. Hydrophilic polyethylenimine modified magnetic graphene oxide composite as an efficient support for dextranase immobilization with improved stability and recyclable performance. Biochem. Eng. J. 141: 163-172. https://doi.org/10.1016/j.bej.2018.10.015
  21. Patel S KS, Anwar MZ, Kumar A, Otari SV, Pagolu RT, Kim SY, et al. 2018. $Fe_2O_3$ yolk-shell particle-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem. Eng. J. 132: 1-8. https://doi.org/10.1016/j.bej.2017.12.013
  22. Wang P, Zhu HJ, Liu JX, Ma Y, Yao JT, Dai, XH, et al. 2019. Double affinity integrated MIPs nanoparticles for specific separation of glycoproteins: A combination of synergistic multiple bindings and imprinting effect. Biochem. Eng. J. 358: 143-152.
  23. Shen L, Cheng KCK, Schroeder M, Yang P, Marsh ENG, Lahann J, et al. 2016. Immobilization of enzyme on a polymer surface. Surf. Sci. 648: 53-59. https://doi.org/10.1016/j.susc.2015.10.046
  24. Rossini CVT, Molina C, Caseli L. 2019. Immobilization of urease in Langmuir-Blodgett films of di-ureasil hybrid compounds. Thin Solid Films 670: 17-23. https://doi.org/10.1016/j.tsf.2018.12.006
  25. Pang R, Li MZ, Zhang CD. 2015. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investing. Talanta 131: 38-45. https://doi.org/10.1016/j.talanta.2014.07.045
  26. Qi B, Luo JQ, Wan YH. 2018. Immobilization of cellulase on a core-shell structured metal-organic framework composites: Better inhibitors tolerance and easier recycling. Bioresour. Technol. 268: 572-582.
  27. Al-Qodah Z, Al-Shannag M, Al-Busoul M, Penchev I, Orfali W. 2017. Immobilized enzymes bioreactors utilizing a magnetic field: a review. Biochem. Eng. J. 121: 94-106. https://doi.org/10.1016/j.bej.2017.02.003
  28. Shen HJ, Gao QQ, Ye Q, Yang SY, Wu YQ, Huang Q, et al. 2018. Peritumoral implantation of hydrogel-containing nanoparticles and losartan for enhanced nanoparticle penetration and antitumor effect. Int. J. Nanomed. 13: 7409-7426. https://doi.org/10.2147/IJN.S178585
  29. Patel SKS, Choi SH, Kang YC, Lee JK. 2016. Large-scale aerosol-assisted synthesis of biofriendly $Fe_2O_3$ yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8: 6728-6738. https://doi.org/10.1039/C6NR00346J
  30. Patel SKS, Choi SH, Kang YC, Lee JK. 2017. Eco-friendly composite of $Fe_3O_4$-reduced graphene oxide particles for efficient enzyme immobilization. Appl. Mater. Interfaces 9: 2213-2222. https://doi.org/10.1021/acsami.6b05165
  31. Wang JH, Zhang Q, Shao XZ, Ma JQ, Tian GH. 2018. Properties of magnetic carbon nanomaterials and application in removal organic dyes. Chemosphere 207: 377-384. https://doi.org/10.1016/j.chemosphere.2018.05.109
  32. Chen Z, Wu C, Zhang ZF, Wu WP, Wang XF, Yu ZQ. 2018. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chinese Chem. Lett. 29: 1601-1608. https://doi.org/10.1016/j.cclet.2018.08.007
  33. Mendonca ESDT, Faria ACB, Dias SCL, Aragon FFH, Mantilla JC, Coaquira JAH, et al. 2019. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surfaces Interfaces 14: 34-43. https://doi.org/10.1016/j.surfin.2018.11.005
  34. Akhter H, Murshed J, Rashed MA, Oshima Y, Nagao Y, Rahman MM, et al. 2017. Fabrication of hydrazine sensor based on silica-coated $Fe_2O_3$ magnetic nanoparticles prepared by a rapid microwave irradiation method. J. Alloy. Compd. 698: 921-929. https://doi.org/10.1016/j.jallcom.2016.12.266
  35. Shen S, Wu L, Liu JJ, Xie M, Shen HJ, Qi XY, et al. 2015. Core-shell structured $Fe_3O_4@TiO_2$-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Int. J. Pharm. 486: 380-388. https://doi.org/10.1016/j.ijpharm.2015.03.070
  36. Kumar A, Park GD, Patel SKS, Kondaveeti S, Otari S, Anwar MZ, et al. 2019. $SiO_2$ microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem. Eng. J. 359: 1252-1264. https://doi.org/10.1016/j.cej.2018.11.052
  37. Donadelli JA, Einschlag FSG, Laurenti E, Magnacca G, Carlos L. 2018. Soybean peroxidase immobilized onto silicacoated superparamagnetic iron oxide nanoparticles: Effect of silica layer on the enzymatic activity. Colloid. Surf. B . Biointerfaces 161: 654-661. https://doi.org/10.1016/j.colsurfb.2017.11.043
  38. Salabat A, Mirhoseini F. 2018. A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. J. Mol. Liq. 268: 849-853. https://doi.org/10.1016/j.molliq.2018.07.112
  39. Leal LRF, Guerra Y, Padron-Hernandez E, Rodrigues AR, Santos FEP, Pena-Garcia R. 2019. Structural and magnetic properties of yttrium iron garnet nanoparticles doped with copper obtained by sol gel method. Mater. Lett. 236: 547-549. https://doi.org/10.1016/j.matlet.2018.11.004
  40. Raj S, Hattori M, Ozawa M. 2019. Ag-doped $ZrO_2$ nanoparticles prepared by hydrothermal method for efficient diesel soot oxidation. Mater. Lett. 234: 205-207. https://doi.org/10.1016/j.matlet.2018.09.057
  41. Petrovic S, Rozic L, Jovic V, Stojadinovic S, Grbic B, Radic N, et al. 2018. Optimization of a nanoparticle ball milling process parameters using the response surface method. Adv. Powder Technol. 29: 2129-2139. https://doi.org/10.1016/j.apt.2018.05.021
  42. Yu QM, Pan S, Huang W, Liu RJ. 2019. Effects of Solution Concentration on Magnetic $NiFe_2O_4$ Nanomaterials Prepared via the Rapid Combustion Process. J. Nanosci. Nanotechno. 19: 2449-2452. https://doi.org/10.1166/jnn.2019.16345
  43. Pan S, Huang W, Yu QM, Liu X, Liu YH, Liu RJ. 2019. A rapid combustion process for the preparation of $Ni_xCu_{1-x}Fe_2O_4$ nanoparticles and their adsorption characteristics of methyl blue. Appl. Phys. A-Mater. 125: 88-98. https://doi.org/10.1007/s00339-019-2390-6
  44. Liu YH, Yu QM, Liu X, Liu RJ. 2019. A dsorption characteristics of methyl blue onto magnetic $Mn_{0.5}Co_{0.5}Fe_2O_4$ nanoparticles prepared via a rapid combustion process. Environ. Prog. Sustain. 38: S277-S287. https://doi.org/10.1002/ep.13009
  45. Liu MB, Hu YY, Zhang YH, Lu HJ. 2013. Mechanism exploration of adsorption-immobilized enzymatic reactor using polymer-coated silica microbeads. Talanta 110: 101-107. https://doi.org/10.1016/j.talanta.2013.02.021
  46. Kashefi S, Borghei SM, Mahmoodi NM. 2019. Covalently immobilized laccase onto graphene oxide nanosheets: Preparation, characterization, and biodegradation of azo dyes in colored wastewater. J. Mol. Liq. 276: 153-162. https://doi.org/10.1016/j.molliq.2018.11.156
  47. Iype T, Thomas J, Mohan S, Johnson KK, George LE, Ambattu LA, et al. 2017. A novel method for immobilization of proteins via entrapment of magnetic nanoparticles through epoxy cross-linking. Anal. Biochem. 519: 42-50. https://doi.org/10.1016/j.ab.2016.12.007
  48. Bilal M, Asgher M, Iqbal HMN, Hu HB, Z hang XH. 2017. Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ. Sci. Pollut. R. 24: 7035-7041. https://doi.org/10.1007/s11356-017-8369-y
  49. Anwar MZ, Kim DJ, Kumar AK, Patel SKS, Otari S, Mardina P, et al. 2017. $SnO_2$ hollow nanotubes: a novel and efficient support matrix for enzyme immobilization. Sci. Rep-Uk 7: 15333. https://doi.org/10.1038/s41598-017-15550-y
  50. Wang XD, Chen ZJ, Li K, Wei XD, Chen ZB, Ruso JM, et al. 2019. The study of titanium dioxide modification by glutaraldehyde and its application of immobilized penicillin acylase. Colloid. Surface A 560: 298-305. https://doi.org/10.1016/j.colsurfa.2018.10.001
  51. Kim TS, Patel SKS, Selvaraj C, Jung WS, Pan CH, Kang YC, et al. 2016. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci. Rep. Uk 6: 33483. https://doi.org/10.1038/srep33483
  52. Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK. 2014. Immobilization of laccase on $SiO_2$ nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647. https://doi.org/10.4014/jmb.1401.01025
  53. Shah P, Sridevi N, Prabhune A, Ramaswamy V. 2008. Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15. Micropor. Mesopor. Mat. 116: 157-165. https://doi.org/10.1016/j.micromeso.2008.03.030
  54. He J, Li XF, Evans DG, Duan X, Li CY. 2000. A new support for the immobilization of penicillin acylase. J. Mol. Catal. B-Enzym. 11: 45-53. https://doi.org/10.1016/S1381-1177(00)00218-6
  55. Wang H, Jiang YJ, Z hou LY, He Y, Gao J. 2013. Immobilization of penicillin G acylase on macro cellular heterogeneous silica-based monoliths. J. Mol. Catal. B Enzym. 96: 1-5. https://doi.org/10.1016/j.molcatb.2013.06.005