• Title/Summary/Keyword: Magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4@SiO_2-CHO$ nanocomposites

Search Result 1, Processing Time 0.017 seconds

Immobilization and Performance of Penicillin G Acylase on Magnetic Ni0.7Co0.3Fe2O4@SiO2-CHO Nanocomposites

  • Lv, Zhixiang;Yu, Qingmei;Wang, Zhou;Liu, Ruijiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.913-922
    • /
    • 2019
  • Magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4$ nanoparticles that were prepared via the rapid combustion process were functionalized and modified to obtain magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4@SiO_2-CHO$ nanocomposites, on which penicillin G acylase (PGA) was covalently immobilized. Selections of immobilization concentration and time of fixation were explored. Catalytic performance of immobilized PGA was characterized. The free PGA had greatest activity at pH 8.0 and $45^{\circ}C$ while immobilized PGA's activities peaked at pH 7.5 and $45^{\circ}C$. Immobilized PGA had better thermal stability than free PGA at the range of $30-50^{\circ}C$ for different time intervals. The activity of free PGA would be 0 and that of immobilized PGA still retained some activities at $60^{\circ}C$ after 2 h. $V_{max}$ and $K_m$ of immobilized PGA were 1.55 mol/min and 0.15 mol/l, respectively. Free PGA's $V_{max}$ and $K_m$ separately were 0.74 mol/min and 0.028 mol/l. Immobilized PGA displayed more than 50% activity after 10 successive cycles. We concluded that immobilized PGA with magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4@SiO_2-CHO$ nanocomposites could become a novel example for the immobilization of other amidohydrolases.