참고문헌
- Wang TH, Lin TF. 2007. Monascus rice products. Adv. Food Nutr. Res. 53: 123-159. https://doi.org/10.1016/S1043-4526(07)53004-4
- Feng Y, Shao Y, Chen F. 2012. Monascus pigments. Appl. Microbiol. Biotechnol. 96: 1421-1440. https://doi.org/10.1007/s00253-012-4504-3
- Patakova P. 2013. Monascus secondary metabolites: production and biological activity. J. Ind. Microbiol. Biotechnol. 40: 169-181. https://doi.org/10.1007/s10295-012-1216-8
- Gao JM, Yang SX, Qin JC. 2013. Azaphilones: chemistry and biology. Chem. Rev. 113: 4755-4811. https://doi.org/10.1021/cr300402y
- Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, et al. 2015. Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Compr. Rev. Food Sci. Food Saf. 14: 555-567. https://doi.org/10.1111/1541-4337.12145
- Lee CL, Hung YP, Hsu YW, Pan TM. 2013. Monascin and ankaflavin have more anti-atherosclerosis effect and less side effect involving increasing creatinine phosphokinase activity than monacolin K under the same dosages. J. Agric. Food Chem. 61: 143-150. https://doi.org/10.1021/jf304346r
- Hsu WH, Pan TM. 2014. A novel PPARgamma agonist monascin's potential application in diabetes prevention. Food Funct. 5: 1334-1340. https://doi.org/10.1039/C3FO60575B
- Chang YY, Hsu WH, Pan TM. 2015. Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells. J. Agric. Food Chem. 63: 192-199. https://doi.org/10.1021/jf504013n
- Lee CL, Wen JY, Hsu YW, Pan TM. 2013. Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J. Agric. Food Chem. 61: 1493-1500. https://doi.org/10.1021/jf304015z
- Lin CH, Lin TH, Pan TM. 2017. Alleviation of metabolic syndrome by monascin and ankaflavin: the perspective of Monascus functional foods. Food Funct. 8: 2102-2109. https://doi.org/10.1039/C7FO00406K
- Wang YR, Liu SF, Shen YC, Chen CL, Huang CN, Pan TM, et al. 2017. A randomized, double-blind clinical study to determine the effect of ANKASCIN 568 plus on blood glucose regulation. J. Food Drug Anal. 25: 409-416. https://doi.org/10.1016/j.jfda.2016.06.011
- Liu SF, Wang YR, Shen YC, Chen CL, Huang CN, Pan TM, et al. 2018. A randomized, double-blind clinical study of the effects of Ankascin 568 plus on blood lipid regulation. J. Food Drug Anal. 26: 393-400. https://doi.org/10.1016/j.jfda.2017.04.006
- Zheng Y, Xin Y, Shi X, Guo Y. 2010. Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. J. Agric. Food Chem. 58: 9523-9528. https://doi.org/10.1021/jf102128t
- Zheng Y, Xin Y, Shi X, Guo Y. 2010. Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823. Appl. Microbiol. Biotechnol. 88: 1169-1177. https://doi.org/10.1007/s00253-010-2834-6
- Zheng Y, Zhang Y, Chen D, Chen H, Lin L, Zheng C, et al. 2016. Monascus pigment rubropunctatin: a potential dual agent for cancer chemotherapy and phototherapy. J. Agric. Food Chem. 64: 2541-2548. https://doi.org/10.1021/acs.jafc.5b05343
- Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, et al. 2013. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 97: 6337-6345. https://doi.org/10.1007/s00253-013-4745-9
- Bijinu B, Suh JW, Park SH, Kwon HJ. 2014. Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv. 4: 59405-59408. https://doi.org/10.1039/C4RA11713A
- Balakrishnan B, Chandran R, Park SH, Kwon HJ. 2015. A new protein factor in the product formation of non-reducing fungal polyketide synthase with a C-terminus reductive domain. J. Microbiol. Biotechnol. 25: 1648-1652. https://doi.org/10.4014/jmb.1504.04086
- Zabala AO, Xu W, Chooi YH, Tang Y. 2012. Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem. Biol. 19: 1049-1059. https://doi.org/10.1016/j.chembiol.2012.07.004
- Chen W, Chen R, Liu Q, He Y, He K, Ding X, et al. 2017. Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem. Sci. 8: 4917-4925. https://doi.org/10.1039/C7SC00475C
- Balakrishnan B, Kim HJ, Suh JW, Chen CC, Liu KH, Park SH, et al. 2014. Monascus azaphilone pigment biosynthesis employs a dedicated fatty acid synthase for short chain fatty acyl moieties. Kor. Soc. Appl. Biol. Chem. 57: 191-196. https://doi.org/10.1007/s13765-014-4017-0
- Balakrishnan B, Chen CC, Pan TM, Kwon HJ. 2014. Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett. 55: 1640-1643. https://doi.org/10.1016/j.tetlet.2014.01.090
- Balakrishnan B, Park SH, Kwon HJ. 2017. A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus. Biotechnol. Lett. 39: 163-169. https://doi.org/10.1007/s10529-016-2232-y
- Balakrishnan B, Park SH, Kwon HJ. 2017. Inactivation of the oxidase gene mppG results in the selective loss of orange azaphilone pigments in Monascus purpureus. Appl. Biol. Chem. 60: 437-446. https://doi.org/10.1007/s13765-017-0296-6
- Hu Z, Zhang X, Wu Z, Qi H, Wang Z. 2012. Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution. Appl. Microbiol. Biotechnol. 94: 81-89. https://doi.org/10.1007/s00253-011-3851-9
- Kang B, Zhang X, Wu Z, Qi H, Wang Z. 2013. Effect of pH and nonionic surfactant on profile of intracellular and extracellular Monascus pigments. Process Biochem. 48: 759-767. https://doi.org/10.1016/j.procbio.2013.03.020
- Xiong X, Zhang X, Wu Z, Wang Z. 2015. Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution. Appl. Microbiol. Biotechnol. 99: 1173-1180. https://doi.org/10.1007/s00253-014-6227-0
- Shi K, Tang R, Huang T, Wang L, Wu Z. 2017. Pigment fingerprint profile during extractive fermentation with Monascus anka GIM 3.592. BMC Biotechnol. 17: 46. https://doi.org/10.1186/s12896-017-0366-1
- Lim YJ, Lee DW, Park SH, Kwon HJ. 2018. Extractive fermentation of Monascus purpureus promotes the production of oxidized congeners of the pigment azaphilone. J. Appl. Biol. Chem. 61: 327-334. https://doi.org/10.3839/jabc.2018.046
- Shi K, Chen G, Pistolozzi M, Xia F, Wu Z. 2016. Improved analysis of Monascus pigments based on their pH-sensitive Uv-Vis absorption and reactivity properties. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 33: 1396-1401. https://doi.org/10.1080/19440049.2016.1214289