DOI QR코드

DOI QR Code

Lactobacillus casei Zhang Prevents Jejunal Epithelial Damage to Early-Weaned Piglets Induced by Escherichia coli K88 via Regulation of Intestinal Mucosal Integrity, Tight Junction Proteins and Immune Factor Expression

  • Wang, Yuying (College of Veterinary Medicine, China Agricultural University) ;
  • Yan, Xue (State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd. (DBN)) ;
  • Zhang, Weiwei (College of Veterinary Medicine, China Agricultural University) ;
  • Liu, Yuanyuan (State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd. (DBN)) ;
  • Han, Deping (College of Veterinary Medicine, China Agricultural University) ;
  • Teng, Kedao (College of Veterinary Medicine, China Agricultural University) ;
  • Ma, Yunfei (College of Veterinary Medicine, China Agricultural University)
  • Received : 2019.03.27
  • Accepted : 2019.05.04
  • Published : 2019.06.28

Abstract

Farm animals such as piglets are often affected by environmental stress, which can disturb the gut ecosystem. Antibiotics were commonly used to prevent diarrhea in weaned piglets, but this was banned by the European Union due to the development of antibiotic resistance. However, the use of probiotics instead of antibiotics may reduce the risk posed by pathogenic microorganisms and reduce the incidence of gastrointestinal diseases. Therefore, this study was conducted to investigate the effects of Lactobacillus casei Zhang on the mechanical barrier and immune function of early-weaned piglets infected using Escherichia coli K88 based on histomorphology and immunology. Fourteen-day-old weaned piglets were divided into a control group and experimental groups that were fed L. casei Zhang and infected with E. coli K88 with or without prefeeding and/or postfeeding of L. casei Zhang. The L. casei Zhang dose used was $10^7CFU/g$ diet. Jejunum segments were obtained before histological, immunohistochemical, and western blot analyses were performed. In addition, the relative mRNA expression of toll receptors and cytokines was measured. Piglets fed L. casei Zhang showed significantly increased jejunum villus height, villus height-crypt depth ratio, muscle thickness, and expression of proliferating cell nuclear antigen and tight junction proteins ZO-1 and occludin. The use of L. casei Zhang effectively reduced intestinal inflammation after infection. We found that L. casei Zhang feeding prevented the jejunum damage induced by E. coli K88, suggesting that it may be a potential alternative to antibiotics for preventing diarrhea in early-weaned piglets.

Keywords

References

  1. Pluske JR, Hampson, DJ, Williams IH. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51: 215-236. https://doi.org/10.1016/S0301-6226(97)00057-2
  2. Halas D, Heo JM, Hansen CF, Kim JC, Hampson DJ, Mullan BP, et al. 2007. Organic acids, prebiotics and protein level as dietary tools to control the weaning transition and reduce post-weaning diarrhoea in piglets. CAB Rev. Perspectives Agric. Vet. Sci. Nutr. Nat. Res. 79: 13.
  3. Lalles JP, Bosi P, Smidt H, Stokes CR. 2007. Weaning-a challenge to gut physiologists. Livest. Sci. 108: 82-93. https://doi.org/10.1016/j.livsci.2007.01.091
  4. Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. 2013.Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control postweaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 97: 207-237. https://doi.org/10.1111/j.1439-0396.2012.01284.x
  5. McDermott PF, Walker RD, White DG. 2003. Antimicrobials: modes of action and mechanisms of resistance. Int. J. Toxicol. 22: 135-143. https://doi.org/10.1080/10915810305089
  6. Kemper N. 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8: 1-13. https://doi.org/10.1016/j.ecolind.2007.06.002
  7. Shimazu T, Villena J, Tohno M, Fujie H, Hosoya S, Shimosato T. et al. 2012. Immunobiotic Lactobacillus jensenii elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the Toll-like receptor signaling pathway. Infect. Immun. 80: 276-288. https://doi.org/10.1128/IAI.05729-11
  8. Villena J, Suzuki R, Fujie H, Chiba E, Takahashi T, Tomosada Y, et al. 2012. Immunobiotic Lactobacillus jensenii modulates the Toll-like receptor 4-induced inflammatory response via negative regulation in porcine antigenpresenting cells. Clin. Vaccine Immunol. 19: 1038-1053. https://doi.org/10.1128/CVI.00199-12
  9. Deng J, Li Y, Zhang J, Yang Q. 2013. Co-administration of Bacillus subtilis RJGP16 and Lactobacillus salivarius B1 strongly enhances the intestinal mucosal immunity of piglets. Res. Vet. Sci. 94: 62-68. https://doi.org/10.1016/j.rvsc.2012.07.025
  10. Alexopoulos C, Georgoulakis IE, Tzivara A, Kyriakis CS, Govaris A, Kyriakis SC. 2004. Fiel evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. J. Vet. Med. Series A 51: 306-312. https://doi.org/10.1111/j.1439-0442.2004.00637.x
  11. Konstantinov SR, Smidt H, Akkermans AD, Casini L, Trevisi P, Mazzoni M, et al. 2008. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol. Ecol. 66: 599-607. https://doi.org/10.1111/j.1574-6941.2008.00517.x
  12. Modesto M, D'Aimmo MR, Stefanini I, Trevisi P, Filippi SD, Casini L, et al. 2009. A novel strategy to select Bifidobacterium strains and prebiotics as natural growth promoters in newly weaned pigs. Livest. Sci. 122: 248-258. https://doi.org/10.1016/j.livsci.2008.08.017
  13. Wu RN, Wang LP, Wang JC, Li HP, Menghe B, Wu JR, et al. 2009. Isolation and preliminary probiotic selection of Lactobacilli from koumiss in Inner Mongolia. J. Basic Microbiol. 49: 1-9. https://doi.org/10.1002/jobm.200990001
  14. Tuo Y, Zhang QJ, Chu FL, Merritt J, Bilige M, Sun,TS, et al. 2008. Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia, China. BMC Immunol. 9: 68 https://doi.org/10.1186/1471-2172-9-68
  15. Rescigno M. 2011.The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol. 32: 256-264. https://doi.org/10.1016/j.it.2011.04.003
  16. Sun Y, Kim SW. 2017. Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Anim. Nutr. 3: 322-330. https://doi.org/10.1016/j.aninu.2017.10.001
  17. Bron PA, van Baarlen P, Kleerebezem M. 2011. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol. 10: 66-78. https://doi.org/10.1038/nrmicro2690
  18. Wan LY, Chen ZJ, Shah NP, El-Nezami H. 2016. Modulation of intestinal epithelial defense responses by probiotic bacteria. Crit. Rev. Food Sci. Nutr. 56: 2628-2641. https://doi.org/10.1080/10408398.2014.905450
  19. Bron PA, Kleerebezem M, Brummer RJ, Cani PD. 2017. Can probiotics modulate human disease by impacting intestinal barrier function? Br. J. Nutr. 117: 93-107. https://doi.org/10.1017/S0007114516004037
  20. Nemcova R, Bomba A, Gancarcikova S, Reiffova K, Guba P, Koscova J, et al. 2007. Effects of the administration of lactobacilli, maltodextrins and fructooligosaccharides upon the adhesion of E. coli O8: K88 to the intestinal mucosa and organic acid levels in the gut contents of piglets. Vet. Res. Commun. 31: 791-800. https://doi.org/10.1007/s11259-007-0048-x
  21. Zhang H , Meng H B L, W ang JG, Sun TS, Xu J , Wang L P, et al. 2006. Research on the potential probiotic characteristics of L. casei Zhang isolated from traditional fermented sour milk in Inner Mongolia, China Dairy Industry 34: 4-10.
  22. Zhang H, Zhang QJ, Ren GQ, Bao QH., 2007. The protective effect of Lactobacillus on challenged mice and its influence on intestinal flora. Microbiology Bulletin 34: 447-45.
  23. Zhao HM., Huang XY, Zuo ZQ, Pan QH., Ao MY, Zhou F, et al. 2013.Probiotics increase T regulatory cells and reduce severity of experimental colitis in mice. World J. Gastroenterol. 19: 742-749. https://doi.org/10.3748/wjg.v19.i5.742
  24. Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M, Tomiyasu N, et al. 2005. Probiotic Lactobacillus induced improvement in murine chronic inflammatory bowel disease is associated with the down regulation of proinflammatory cytokines in lamina propria mononuclear cells. Cli. Exp. Immunol. 140: 417-426. https://doi.org/10.1111/j.1365-2249.2005.02790.x
  25. Fujiwara M, Kaneko T, Iwana H, Taketomo N, Tsunoo H, Kanno J, et al. 2003. Okayasu I. Inhibitory effects of Bifidobacterium longum on experimental ulcerative colitis induced in mice by synthetic dextran sulfate sodium. Digestion 67: 90-95. https://doi.org/10.1159/000069704
  26. Osman N, Adawi D, Ahrne S, Jeppsson B, Molin G, 2004. Modulation of the effect of dextran sulfate sodium-induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Dig. Dis. Sci. 49: 320-327. https://doi.org/10.1023/B:DDAS.0000017459.59088.43
  27. Chichlowski M, Croom WJ, Edens FW, MacBride BW, Qiu R, Chiang CC, et al. 2007. Microarchitecture and spatial relationship between bacteria and ileal, cecal, and colonic epithelium in chicks fed a direct-fed microbial, PrimaLac, and Salinomycin. Poult. Sci. 86: 1121-1132. https://doi.org/10.1093/ps/86.6.1121
  28. Samanya M, Yamauchi K, 2002. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var natto. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133: 95-104. https://doi.org/10.1016/S1095-6433(02)00121-6
  29. Mailand N, Gibbs-Seymour I, Bekker-Jensen S. 2013. Regulation of PCNA-protein interactions for genome stability. Nat. Rev. Mol. Cell Biol. 14: 269-82. https://doi.org/10.1038/nrm3562
  30. Nusrat A, Turner JR., Madara JL,. 2000. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am. J. Physiol. Gastrointest. Liver Physiol. 279: G851-G857. https://doi.org/10.1152/ajpgi.2000.279.5.G851
  31. Fasano A. 2011. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 91: 151-175. https://doi.org/10.1152/physrev.00003.2008
  32. Khailova L, Dvorak K, Arganbright KM, Halpern MD, Kinouchi T, Yajima M, et al. 2009. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am. J. Physiol.Gastrointest. Liver Physiol. 297: G940-949. https://doi.org/10.1152/ajpgi.00141.2009
  33. Parassol N, Freitas M, Thoreux K, Dalmasso G, Bourdet-Sicard R, Rampal P, 2005. Lactobacillus casei DN-114 001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells. Res. Microbiol. 156: 256-262. https://doi.org/10.1099/mic.0.034298-0
  34. Resta-Lenert, S, Barrett KE. 2003. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52: 988-997. https://doi.org/10.1136/gut.52.7.988
  35. Lim KH, Staudt LM. 2013. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol. 5: a011247. https://doi.org/10.1101/cshperspect.a011247
  36. Castillo NA, Perdigon G, de LeBlanc AM. 2011. Oral administration of a probiotic Lactobacillu modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol. 11: 177. https://doi.org/10.1186/1471-2180-11-177
  37. Galdeano CM, Perdigon G. 2006. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin. Vaccine Immunol. 13: 219-226. https://doi.org/10.1128/CVI.13.2.219-226.2006
  38. Yanju C. 2012. Effects of probiotics on TLR2, TLR4 expression and NF-${\kappa}B$ activity in intestinal mucosa of rats with experimental colitis. J. Gastroenterol. Hepatol. 21: 760-763.
  39. Yang X, Fu Y, Liu J, Ren HY. 2013. Impact of probiotics on toll-like receptor 4 expression in an experimental model of ulcerative colitis. J. Huazhong Univ. Sci. Technol. Med. Sci. 33: 661-665. https://doi.org/10.1007/s11596-013-1177-9
  40. Saraiva M, O'Garra A. 2010. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10: 170-181. https://doi.org/10.1038/nri2711
  41. Katz Y, Nadiv O, Rapoport MJ, Loos M. 2000. IL-17 regulates gene expression and protein synthesis of the complement system, C3 and factor B, in skin fibroblasts. Clin. Exp. Immunol. 120: 22-29. https://doi.org/10.1046/j.1365-2249.2000.01199.x
  42. Zelova H, Hosek J. 2013. TNF-${\alpha}$ signalling and inflammation: interactions between old acquaintances. Inflamm. Res. 62: 641-651. https://doi.org/10.1007/s00011-013-0633-0
  43. Dong C, Flavell RA. 2001. Th1 and Th2 cells. Curr. Opin. Hematol. 8: 47-51. https://doi.org/10.1097/00062752-200101000-00009
  44. Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, et al. 2003. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut 52: 370-376. https://doi.org/10.1136/gut.52.3.370
  45. Ya T, Zhang Q, Chu F, Merritt J, Bilige M, Sun T, et al. 2008. Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia, China. BMC Immunol. 9: 68. https://doi.org/10.1186/1471-2172-9-68
  46. Gill HS. 2003. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 17: 755-773. https://doi.org/10.1016/S1521-6918(03)00074-X
  47. Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. 2009. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28: 243-273. https://doi.org/10.1146/annurev-immunol-030409-101314
  48. Tezuka H., Abe Y, Iwata M., Takeuchi H., Ishikawa H., Matsushita M, et al. 2007. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448: 929-933. https://doi.org/10.1038/nature06033
  49. Ogawa M, Shimizu K, Nomoto K, Takahashi M, Watanuki M, Tanaka R, et al. 2001. Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli O157:H7 infection in infant rabbits. Infect. Immun. 69: 1101-1108. https://doi.org/10.1128/IAI.69.2.1101-1108.2001
  50. Martins FS, S ilva AA, V ieira AT, B arbosa FH, Arantes RM, Teixeira MM, et al. 2009. Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties. Arch. Microbiol. 191: 623-630. https://doi.org/10.1007/s00203-009-0491-x
  51. Shu Q, Gill HS. 2001. A dietary probiotic (Bifidobacterium lactis HN019) reduces the severity of Escherichia coli O157:H7 infection in mice. Med. Microbiol. Immunol. 189: 147-152. https://doi.org/10.1007/s430-001-8021-9
  52. Shandilya UK, Sharma A, Kapila R, Kansal VK. 2016. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates immunoglobulin levels and cytokines expression in whey proteins sensitised mice. J. Sci. Food Agric. 96: 3180-3187. https://doi.org/10.1002/jsfa.7497

Cited by

  1. Present and Future Therapeutic Approaches to Barrier Dysfunction vol.8, 2019, https://doi.org/10.3389/fnut.2021.718093
  2. Metagenomic and metatranscriptomic profiling of Lactobacillus casei Zhang in the human gut vol.7, pp.1, 2019, https://doi.org/10.1038/s41522-021-00227-2