참고문헌
- Cameron DE, Bashor CJ, Collins JJ. 2014. A brief history of synthetic biology. Nat Rev. Microbiol. 12: 381-390. https://doi.org/10.1038/nrmicro3239
- Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martin HG. 2016. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst. Biol. Appl. 2: 16009. https://doi.org/10.1038/npjsba.2016.9
- Paddon CJ, Keasling JD. 2014. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12: 355-367. https://doi.org/10.1038/nrmicro3240
- Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. 2008. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19: 556-563. https://doi.org/10.1016/j.copbio.2008.10.014
- Kim SY, Song MK, Jeon JH, Ahn JH. 2018. Current status of microbial phenylethanoid biosynthesis. J. Microbiol. Biotechnol. 28: 1225-1232. https://doi.org/10.4014/jmb.1805.05021
- Cheng F, Luozhong S, Yu H, Guo Z. 2019. Biosynthesis of chondroitin in engineered Corynebacterium glutamicum. J. Microbiol. Biotechnol. 29: 392-400. https://doi.org/10.4014/jmb.1810.10062
- Ruder WC, Lu T, Collins JJ. 2011. Synthetic biology moving into the clinic. Science 333: 1248-1252. https://doi.org/10.1126/science.1206843
- Folcher M, Fussenegger M. 2012. Synthetic biology advancing clinical applications. Curr. Opin. Chem. Biol. 16: 345-354. https://doi.org/10.1016/j.cbpa.2012.06.008
- Chen YY, Smolke CD. 2011. From DNA to targeted therapeutics: bringing synthetic biology to the clinic. Sci. Transl. Med. 3(106): 106ps42 https://doi.org/10.1126/scitranslmed.3002944
- Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA, Team AQAUai. 2019. Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 37: 100-115. https://doi.org/10.1016/j.tibtech.2018.09.005
- Mays ZJ, Nair NU. 2018. Synthetic biology in probiotic lactic acid bacteria: at the frontier of living therapeutics. Curr. Opin. Biotechnol. 53: 224-231. https://doi.org/10.1016/j.copbio.2018.01.028
- Jain A, Bhatia P, Chugh A. 2012. Microbial synthetic biology for human therapeutics. Syst. Synth. Biol. 6: 9-22. https://doi.org/10.1007/s11693-012-9092-0
- Riglar DT, Silver PA. 2018. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16: 214-225. https://doi.org/10.1038/nrmicro.2017.172
- Vandenbroucke K, de Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L, et al. 2010. Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 3: 49-56. https://doi.org/10.1038/mi.2009.116
- Chien T, Doshi A, Danino T. 2017. Advances in bacterial cancer therapies using synthetic biology. Curr. Opin. Syst. Biol. 5: 1-8. https://doi.org/10.1016/j.coisb.2017.05.009
- Chen Z, He A, Liu Y, Huang W, Cai Z. 2016. Recent development on synthetic biological devices treating bladder cancer. Synth. Syst. Biotechnol. 1: 216-220. https://doi.org/10.1016/j.synbio.2016.08.001
- Chakravarti D, Wong WW. 2015. Synthetic biology in cellbased cancer immunotherapy. Trends Biotechnol. 33: 449-461. https://doi.org/10.1016/j.tibtech.2015.05.001
- Bhattarai SR, Yoo SY, Lee SW, Dean D. 2012. Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection. Biomaterials 33: 5166-5174. https://doi.org/10.1016/j.biomaterials.2012.03.054
- Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J, Allen K, et al. 2016. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536: 81-85. https://doi.org/10.1038/nature18930
- Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, et al. 2018. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36: 857-864. https://doi.org/10.1038/nbt.4222
- Wegmann U, Carvalho AL, Stocks M, Carding SR. 2017. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect. Sci. Rep. 7: 2294. https://doi.org/10.1038/s41598-017-02591-6
- Slomovic S, Pardee K, Collins JJ. 2015. Synthetic biology devices for in vitro and in vivo diagnostics. Proc. Natl. Acad. Sci. USA 112: 14429-14435. https://doi.org/10.1073/pnas.1508521112
- Courbet A, Renard E, Molina F. 2016. Bringing next-generation diagnostics to the clinic through synthetic biology. EMBO Mol. Med. 8: 987-991. https://doi.org/10.15252/emmm.201606541
- Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, et al. 2014. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl. Acad. Sci. USA 111: 4838-4843. https://doi.org/10.1073/pnas.1321321111
- Daeffler KN, Galley JD, Sheth RU, Ortiz-Velez LC, Bibb CO, Shroyer NF, et al. 2017. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13: 923. https://doi.org/10.15252/msb.20167416
- Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, et al. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467: 426-429. https://doi.org/10.1038/nature09415
- Jackson MR, Melideo SL, Jorns MS. 2012. Human sulfide: quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51: 6804-6815. https://doi.org/10.1021/bi300778t
- Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. 1999. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32: 275-287. https://doi.org/10.1046/j.1365-2958.1999.01345.x
- Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. 1995. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J. Bacteriol. 177: 2813-2820. https://doi.org/10.1128/jb.177.10.2813-2820.1995
- Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. 2014. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104: Unit 15.25.
- Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, et al. 2015. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7(289): 289ra84. https://doi.org/10.1126/scitranslmed.aaa3519
- Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, et al. 2017. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin. Cancer Res. 23: 2061-2070. https://doi.org/10.1158/1078-0432.CCR-16-1599
- Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM, et al. 2008. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin. Cancer Res. 14: 2295-2302. https://doi.org/10.1158/1078-0432.CCR-07-4254
- Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. 2007. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int. J. Med. Microbiol. 297: 151-162. https://doi.org/10.1016/j.ijmm.2007.01.008
- Gerdes K. 1988. The Parb (Hok Sok) Locus of plasmid-R1-a general-purpose plasmid stabilization system. Bio-Technol. 6: 1402-1405.
- Derman AI, Becker EC, Truong BD, Fujioka A, Tucey TM, Erb ML, et al. 2009. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol. Microbiol. 73: 534-552. https://doi.org/10.1111/j.1365-2958.2009.06771.x
- Claesen J, Fischbach MA. 2015. Synthetic microbes as drug delivery systems. ACS Synth. Biol. 4: 358-364. https://doi.org/10.1021/sb500258b
- Hamady ZZ, Scott N, Farrar MD, Lodge JP, Holland KT, Whitehead T, et al. 2010. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59: 461-469. https://doi.org/10.1136/gut.2008.176131
- Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH. 1995. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102: 448-455. https://doi.org/10.1111/j.1365-2249.1995.tb03836.x
- Cook DP, Gysemans C, Mathieu C. 2017. Lactococcus lactis as a versatile vehicle for tolerogenic immunotherapy. Front. Immunol. 8: 1961. https://doi.org/10.3389/fimmu.2017.01961
- Housley RM, Morris CF, Boyle W, Ring B, Biltz R, Tarpley JE, et al. 1994. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract. J. Clin. Invest. 94: 1764-1777. https://doi.org/10.1172/JCI117524
- Abil Z, Xiong X, Zhao H. 2015. Synthetic biology for therapeutic applications. Mol. Pharm. 12: 322-331. https://doi.org/10.1021/mp500392q
- Ozdemir T, Fedorec AJH, Danino T, Barnes CP. 2018. Synthetic biology and engineered live biotherapeutics: toward increasing system complexity. Cell Syst. 7: 5-16. https://doi.org/10.1016/j.cels.2018.06.008
- Sittipo P, Lobionda S, Lee YK, Maynard CL. 2018. Intestinal microbiota and the immune system in metabolic diseases. J. Microbiol. 56: 154-162. https://doi.org/10.1007/s12275-018-7548-y
- Duan F, March JC. 2010. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl. Acad. Sci. USA 107: 11260-11264. https://doi.org/10.1073/pnas.1001294107
- Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69-82. https://doi.org/10.1016/j.cell.2004.06.009
- Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, et al. 2017. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8: 15028. https://doi.org/10.1038/ncomms15028
- Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SS, et al. 2011. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol. Syst. Biol. 7: 521. https://doi.org/10.1038/msb.2011.55
- Nerup J, Mandrup-Poulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J. 1988. Mechanisms of pancreatic beta-cell destruction in type I diabetes. Diabetes Care. 11 Suppl 1: 16-23.
- Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, et al. 2014. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63: 2876-2887. https://doi.org/10.2337/db13-1236
- Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. 1993. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366: 72-75. https://doi.org/10.1038/366072a0
- Dosoky NS, Guo L, Chen Z, Feigley AV, Davies SS. 2018. Dietary fatty acids control the species of N-Acylphosphatidylethanolamines synthesized by therapeutically modified bacteria in the intestinal tract. ACS Infect. Dis. 4: 3-13. https://doi.org/10.1021/acsinfecdis.7b00127
- Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, et al. 2014. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest. 124: 3391-3406. https://doi.org/10.1172/JCI72517
- Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, et al. 2008. N-acylphosphatidylethanolamine, a gutderived circulating factor induced by fat ingestion, inhibits food intake. Cell 135: 813-824. https://doi.org/10.1016/j.cell.2008.10.043
- Pinero-Lambea C, Bodelon G, Fernandez-Perianez R, Cuesta AM, Alvarez-Vallina L, Fernandez LA. 2015. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 4: 463-473. https://doi.org/10.1021/sb500252a
- Park SH, Zheng JH, Nguyen VH, Jiang SN, Kim DY, Szardenings M, et al. 2016. RGD Peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated salmonella-mediated cancer therapy. Theranostics 6: 1672-1682. https://doi.org/10.7150/thno.16135
- Kramer MG, Masner M, Ferreira FA, Hoffman RM. 2018. Bacterial therapy of cancer: promises, limitations, and insights for future directions. Front. Microbiol. 9: 16. https://doi.org/10.3389/fmicb.2018.00016
- Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MH, Fleming JB, et al. 2014. Efficacy of Salmonella typhimurium A1-R versus chemotherapy on a pancreatic cancer patientderived orthotopic xenograft (PDOX). J. Cell Biochem. 115: 1254-1261. https://doi.org/10.1002/jcb.24769
- Yamamoto M, Zhao M, Hiroshima Y, Zhang Y, Shurell E, Eilber FC, et al. 2016. Efficacy of tumor-targeting Salmonella A1-R on a melanoma patient-derived orthotopic xenograft (PDOX) nude mouse model. PLoS One. 11: e0160882. https://doi.org/10.1371/journal.pone.0160882
- Bull MJ, Jolley KA, Bray JE, Aerts M, Vandamme P, Maiden MC, et al. 2014. The domestication of the probiotic bacterium Lactobacillus acidophilus. Sci. Rep. 4: 7202. https://doi.org/10.1038/srep07202
- Dou J, Bennett MR. 2018. Synthetic biology and the gut microbiome. Biotechnol. J. 13: e1700159. https://doi.org/10.1002/biot.201700159
- Park W. 2018. Gut microbiomes and their metabolites shape human and animal health. J. Microbiol. 56: 151-153. https://doi.org/10.1007/s12275-018-0577-8
- Lee ES, Song EJ, Nam YD, Lee SY. 2018. Probiotics in human health and disease: from nutribiotics to pharmabiotics. J. Microbiol. 56: 773-782. https://doi.org/10.1007/s12275-018-8293-y
- Wright O, Stan GB, Ellis T. 2013. Building-in biosafety for synthetic biology. Microbiology 159: 1221-1235. https://doi.org/10.1099/mic.0.066308-0
- Wang F, Zhang W. 2019. Synthetic biology: Recent progress, biosafety and biosecurity concerns, and possible solutions. J. Biosafety Biosecurity 1: 22-30. https://doi.org/10.1016/j.jobb.2018.12.003
피인용 문헌
- Recent advances in modulating the microbiome vol.9, 2019, https://doi.org/10.12688/f1000research.20204.1