DOI QR코드

DOI QR Code

Nitrifying-genes Dynamics in the Enriched Bacterial Consortium Inoculated with Humic Soil

부식토 유래 질산화세균 consortium의 질산화 유전자 거동 특성

  • Seo, Yoon-Joo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Yun-Yeong (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Choi, Hyung-Joo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 서윤주 (이화여자대학교환경공학과) ;
  • 이윤영 (이화여자대학교환경공학과) ;
  • 최형주 (이화여자대학교환경공학과) ;
  • 조경숙 (이화여자대학교환경공학과)
  • Received : 2018.09.25
  • Accepted : 2018.10.26
  • Published : 2019.06.28

Abstract

In this study, the effects of ammonium concentration ($117.5-1155.0mg-N{\cdot}l^{-1}$), nitrite concentration ($0-50.0mg-N{\cdot}l^{-1}$), and temperature ($15-35^{\circ}C$) on nitrification performance and its functional genes (amoA-arc, amoA-bac, hao) in an enriched consortium inoculated with humic acid were determined. Notably, the maximum nitrification rate value was observed at $315mg-N{\cdot}l^{-1}$ of ammonium, but the highest functional gene copy numbers were obtained at $630mg-N{\cdot}l^{-1}$ of ammonium. No inhibition of the nitrification rate and functional gene copy numbers was observed via the added nitrites. The optimum temperature for maximum nitrification performance was observed to be $30^{\circ}C$. The amoA-bac copy numbers were also greater than those of amoA-arc under all test conditions. Notably, amoA-arc copy numbers and nitrification efficiency showed a positive relationship in network analysis. These results indicate that ammonium-oxidizing archaea and bacteria play important roles in the nitrification process.

Keywords

References

  1. Levy-Booth DJ, Prescott CE, Grayston SJ. 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 75: 11-25. https://doi.org/10.1016/j.soilbio.2014.03.021
  2. Bru D, Ramette R, Saby NPA, Dequiedt S, Ranjard L, Jolivet C, et al. 2011. Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J. 5: 532-542. https://doi.org/10.1038/ismej.2010.130
  3. Horz H-P, Barbrook A, Field CB, Bohannan BJM. 2004. Ammoniaoxidizing bacteria respond to multifactorial global change. Proc. Natl. Acad. Sci. USA 101: 15136-15141. https://doi.org/10.1073/pnas.0406616101
  4. Gao J, Luo X, Wu G, Li T, Peng Y. 2014. Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment systems. Appl. Microbiol. Biotechnol. 98: 3339-3354. https://doi.org/10.1007/s00253-013-5428-2
  5. Keluskar R, Desai A. 2014. Evaluation of hydroxylamine oxidoreductase as a functional and phylogenetic marker to differentiate Nitrosomonas spp. J. Basic Microbiol. 54: 261-268. https://doi.org/10.1002/jobm.201200378
  6. Chen S, Ling J, Blancheton JP. 2006. Nitrification kinetics of biofilm as affected by water quality factors. Aquacult. Eng. 34: 34179-97.
  7. Shanahan JW, Semmens MJ. 2015. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: An experimental and model analysis. Water Res. 74: 10-22. https://doi.org/10.1016/j.watres.2014.12.055
  8. Kinyage JP, Pedersen LF. 2016. Impact of temperature on ammonium and nitrite removal rates in RAS moving bed biofilters. Aquacult. Eng. 75: 51-55. https://doi.org/10.1016/j.aquaeng.2016.10.006
  9. Paerl HW. 1998. Microbially mediated nitrogen cycling, pp. 3-30. In Burlage RS, Atlas R, Stahl D, Sayler G, Geesey G (eds.), Techniques in microbial ecology. Oxford University Press, Oxford.
  10. Kim TG, Yun J, Hong SH, Cho KS. 2014. Effects of water temperature and backwashing on bacterial population and community in a biological activated carbon process at a water treatment plant. Appl. Microbiol. Biotechnol. 98: 1417-1427. https://doi.org/10.1007/s00253-013-5057-9
  11. Song K, Suenaga T, Hamamoto A, Satou K, Riya S, Hosomi M, et al. 2014. Abundance, transcription levels and phylogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant. J. Biosci. Bioeng. 118: 289-297. https://doi.org/10.1016/j.jbiosc.2014.02.028
  12. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102: 14683-14688. https://doi.org/10.1073/pnas.0506625102
  13. Rotthauwe J, Witzel K. 1997. The Ammonia Monooxygenase structural gene amoA as a functional marker?: molecular finescale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712. https://doi.org/10.1128/AEM.63.12.4704-4712.1997
  14. Wu B, Lan T, Lu D, Liu Z. 2014. Ecological and enzymatic responses to petroleum contamination. Environ. Sci. Process. Impacts 16: 1501-1509. https://doi.org/10.1039/C3EM00731F
  15. Schmid MC, Hooper AB, Klotz MG, Woebken D, Lam P, Kuypers MMM, et al. 2008. Environmental detection of octaheme cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ. Microbiol. 10: 3140-3149. https://doi.org/10.1111/j.1462-2920.2008.01732.x
  16. Padhi SK, Tripathy S, Sen R, Mahapatra AS, Mohanty S, Maiti NK. 2013. Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int. Biodeterior. Biodegrad. 78: 67-73. https://doi.org/10.1016/j.ibiod.2013.01.001
  17. Ki BM, Ryu HW, Cho KS. 2018. Extended local similarity analysis (eLSA) reveals unique associations between bacterial community structure and odor emission during pig carcasses decomposition. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 53: 718-727. https://doi.org/10.1080/10934529.2018.1439856
  18. Ruiz G, Jeison D, Chamy R. 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 37: 1371-1377. https://doi.org/10.1016/S0043-1354(02)00475-X
  19. Aslan S, Miller L, Dahab M. 2009. Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors. Bioresour. Technol. 100: 659-664. https://doi.org/10.1016/j.biortech.2008.07.033
  20. Wang LK, Zeng GM, Yang ZH, Luo LL, Xu HY, Huang J. 2014. Operation of partial nitrification to nitrite of landfill leachate and its performance with respect to different oxygen conditions. Biochem. Eng. J. 87: 62-68. https://doi.org/10.1016/j.bej.2014.03.013
  21. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, et al. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809. https://doi.org/10.1038/nature04983
  22. He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, et al. 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 9: 2364-2374. https://doi.org/10.1111/j.1462-2920.2007.01358.x
  23. Sterngren AE, Hallin S, Bengtson P. 2015. Archaeal ammonia oxidizers dominate in numbers, but bacteria drive gross nitrification in N-amended grassland soil. Front. Microbiol. 6: 1350. https://doi.org/10.3389/fmicb.2015.01350
  24. Gao J, Fan X, Wu G, Li T, Pan K. 2016. Changes of abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in three nitrifying bioreactors with different ammonia concentrations. Desalin. Water Treat. 57: 21463-21475. https://doi.org/10.1080/19443994.2015.1123196
  25. Van Cleemput O, Samater AH. 1995. Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fertil. Res. 45: 81-89. https://doi.org/10.1007/BF00749884
  26. Verstraete W, Focht DD. 1997. Biochemical ecology of nitrification and denitrification, pp. 135-214. In Alexander M (ed.), Advances in microbial ecology, Springer US, Boston.
  27. Jones RD, Hood MA. 1980. Effects of temperature, pH, salinity, and inorganic nitrogen on the rate of ammonium oxidation by nitrifiers isolated from wetland environments. Microb. Ecol. 6: 339-347. https://doi.org/10.1007/BF02010496
  28. Antoniou P, Hamilton J, Koopman B, Jain R, Holloway B, Lyberatos G, et al. 1990. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Res. 24: 97-101. https://doi.org/10.1016/0043-1354(90)90070-M
  29. Park HD, Wells GF, Bae H, Griddle CS, Francis CA. 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 72: 5643-5647. https://doi.org/10.1128/AEM.00402-06
  30. Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C. 2011. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour. Technol. 102: 3694-3701. https://doi.org/10.1016/j.biortech.2010.11.085
  31. Sinthusith N, Terada A, Hahn M, Noophan P, Munakata-Marr J, Figueroa LA. 2015. Identification and quantification of bacteria and archaea responsible for ammonia oxidation in different activated sludge of full-scale wastewater treatment plants. J. Environ. Sci. Heal. - Part A Toxic Hazardous Subst. Environ. Eng. 50: 169-175. https://doi.org/10.1080/10934529.2014.975535