References
- Levy-Booth DJ, Prescott CE, Grayston SJ. 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 75: 11-25. https://doi.org/10.1016/j.soilbio.2014.03.021
- Bru D, Ramette R, Saby NPA, Dequiedt S, Ranjard L, Jolivet C, et al. 2011. Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J. 5: 532-542. https://doi.org/10.1038/ismej.2010.130
- Horz H-P, Barbrook A, Field CB, Bohannan BJM. 2004. Ammoniaoxidizing bacteria respond to multifactorial global change. Proc. Natl. Acad. Sci. USA 101: 15136-15141. https://doi.org/10.1073/pnas.0406616101
- Gao J, Luo X, Wu G, Li T, Peng Y. 2014. Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment systems. Appl. Microbiol. Biotechnol. 98: 3339-3354. https://doi.org/10.1007/s00253-013-5428-2
- Keluskar R, Desai A. 2014. Evaluation of hydroxylamine oxidoreductase as a functional and phylogenetic marker to differentiate Nitrosomonas spp. J. Basic Microbiol. 54: 261-268. https://doi.org/10.1002/jobm.201200378
- Chen S, Ling J, Blancheton JP. 2006. Nitrification kinetics of biofilm as affected by water quality factors. Aquacult. Eng. 34: 34179-97.
- Shanahan JW, Semmens MJ. 2015. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: An experimental and model analysis. Water Res. 74: 10-22. https://doi.org/10.1016/j.watres.2014.12.055
- Kinyage JP, Pedersen LF. 2016. Impact of temperature on ammonium and nitrite removal rates in RAS moving bed biofilters. Aquacult. Eng. 75: 51-55. https://doi.org/10.1016/j.aquaeng.2016.10.006
- Paerl HW. 1998. Microbially mediated nitrogen cycling, pp. 3-30. In Burlage RS, Atlas R, Stahl D, Sayler G, Geesey G (eds.), Techniques in microbial ecology. Oxford University Press, Oxford.
- Kim TG, Yun J, Hong SH, Cho KS. 2014. Effects of water temperature and backwashing on bacterial population and community in a biological activated carbon process at a water treatment plant. Appl. Microbiol. Biotechnol. 98: 1417-1427. https://doi.org/10.1007/s00253-013-5057-9
- Song K, Suenaga T, Hamamoto A, Satou K, Riya S, Hosomi M, et al. 2014. Abundance, transcription levels and phylogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant. J. Biosci. Bioeng. 118: 289-297. https://doi.org/10.1016/j.jbiosc.2014.02.028
- Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102: 14683-14688. https://doi.org/10.1073/pnas.0506625102
- Rotthauwe J, Witzel K. 1997. The Ammonia Monooxygenase structural gene amoA as a functional marker?: molecular finescale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712. https://doi.org/10.1128/AEM.63.12.4704-4712.1997
- Wu B, Lan T, Lu D, Liu Z. 2014. Ecological and enzymatic responses to petroleum contamination. Environ. Sci. Process. Impacts 16: 1501-1509. https://doi.org/10.1039/C3EM00731F
- Schmid MC, Hooper AB, Klotz MG, Woebken D, Lam P, Kuypers MMM, et al. 2008. Environmental detection of octaheme cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ. Microbiol. 10: 3140-3149. https://doi.org/10.1111/j.1462-2920.2008.01732.x
- Padhi SK, Tripathy S, Sen R, Mahapatra AS, Mohanty S, Maiti NK. 2013. Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int. Biodeterior. Biodegrad. 78: 67-73. https://doi.org/10.1016/j.ibiod.2013.01.001
- Ki BM, Ryu HW, Cho KS. 2018. Extended local similarity analysis (eLSA) reveals unique associations between bacterial community structure and odor emission during pig carcasses decomposition. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 53: 718-727. https://doi.org/10.1080/10934529.2018.1439856
- Ruiz G, Jeison D, Chamy R. 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 37: 1371-1377. https://doi.org/10.1016/S0043-1354(02)00475-X
- Aslan S, Miller L, Dahab M. 2009. Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors. Bioresour. Technol. 100: 659-664. https://doi.org/10.1016/j.biortech.2008.07.033
- Wang LK, Zeng GM, Yang ZH, Luo LL, Xu HY, Huang J. 2014. Operation of partial nitrification to nitrite of landfill leachate and its performance with respect to different oxygen conditions. Biochem. Eng. J. 87: 62-68. https://doi.org/10.1016/j.bej.2014.03.013
- Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, et al. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809. https://doi.org/10.1038/nature04983
- He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, et al. 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ. Microbiol. 9: 2364-2374. https://doi.org/10.1111/j.1462-2920.2007.01358.x
- Sterngren AE, Hallin S, Bengtson P. 2015. Archaeal ammonia oxidizers dominate in numbers, but bacteria drive gross nitrification in N-amended grassland soil. Front. Microbiol. 6: 1350. https://doi.org/10.3389/fmicb.2015.01350
- Gao J, Fan X, Wu G, Li T, Pan K. 2016. Changes of abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in three nitrifying bioreactors with different ammonia concentrations. Desalin. Water Treat. 57: 21463-21475. https://doi.org/10.1080/19443994.2015.1123196
- Van Cleemput O, Samater AH. 1995. Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fertil. Res. 45: 81-89. https://doi.org/10.1007/BF00749884
- Verstraete W, Focht DD. 1997. Biochemical ecology of nitrification and denitrification, pp. 135-214. In Alexander M (ed.), Advances in microbial ecology, Springer US, Boston.
- Jones RD, Hood MA. 1980. Effects of temperature, pH, salinity, and inorganic nitrogen on the rate of ammonium oxidation by nitrifiers isolated from wetland environments. Microb. Ecol. 6: 339-347. https://doi.org/10.1007/BF02010496
- Antoniou P, Hamilton J, Koopman B, Jain R, Holloway B, Lyberatos G, et al. 1990. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Res. 24: 97-101. https://doi.org/10.1016/0043-1354(90)90070-M
- Park HD, Wells GF, Bae H, Griddle CS, Francis CA. 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 72: 5643-5647. https://doi.org/10.1128/AEM.00402-06
- Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C. 2011. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour. Technol. 102: 3694-3701. https://doi.org/10.1016/j.biortech.2010.11.085
- Sinthusith N, Terada A, Hahn M, Noophan P, Munakata-Marr J, Figueroa LA. 2015. Identification and quantification of bacteria and archaea responsible for ammonia oxidation in different activated sludge of full-scale wastewater treatment plants. J. Environ. Sci. Heal. - Part A Toxic Hazardous Subst. Environ. Eng. 50: 169-175. https://doi.org/10.1080/10934529.2014.975535