References
- Gadd GM. 1992. Metals and microorganisms: A problem of definition. FEMS Microbiol. Lett. 100: 197-203. https://doi.org/10.1111/j.1574-6968.1992.tb05703.x
- Nies DH. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750. https://doi.org/10.1007/s002530051457
- Trevors JT, Oddie KM, Belliveau BH. 1985. Metal resistance in bacteria. FEMS Microbiol. Lett. 32: 39-54. https://doi.org/10.1111/j.1574-6968.1985.tb01181.x
- Bhattacharyya S, Chatterjee S, Basu S. 2008. Mercury pollution: The problem still persists. Everyman's Sci. 42: 279-286.
- Lima e Silva AAD, Carvalho MA, de Souza SA, Dias PMT, Silva Filho RGD, Saramago CS, et al. 2012. Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz. J. Microbiol. 43: 1620-1631. https://doi.org/10.1590/S1517-83822012000400047
- Bruins MR, Kapil S, Oehme FW. 2000. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45: 198-207. https://doi.org/10.1006/eesa.1999.1860
- Valko M, Morris H, Cronin M. 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem. 12: 1161-1208. https://doi.org/10.2174/0929867053764635
- Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7: 60-72. https://doi.org/10.2478/intox-2014-0009
- Singh N, Kumar D, Sahu AP. 2007. Arsenic in the environment: effects on human health and possible prevention. J. Environ. Biol. 28: 359-365.
- Hopkins J. 1991. IARC Monographs on the evaluation of carcinogenic risks to humans: Volume 49. Chromium, nickel and welding. Food Chem. Toxicol. 29: 647-648.
- Ahluwalia SS, Goyal D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98: 2243-2257. https://doi.org/10.1016/j.biortech.2005.12.006
- Hussein H, Farag S, Moawad H. 2003. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab. J. Biotechnol. 7: 13-22.
- Waisberg M, Joseph P, Hale B, Beyersmann D. 2003. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192: 95-117. https://doi.org/10.1016/S0300-483X(03)00305-6
- Kapoor A, Viraraghavan T. 1995. Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53: 195-206. https://doi.org/10.1016/0960-8524(95)00072-M
- Kang CH, Kwon YJ, So JS. 2016. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 89: 64-69. https://doi.org/10.1016/j.ecoleng.2016.01.023
- Sehgal M, Garg A, Suresh R, Dagar P. 2012. Heavy metal contamination in the Delhi segment of Yamuna basin. Environ. Monit. Assess. 184: 1181-1196. https://doi.org/10.1007/s10661-011-2031-9
- Volpicella M, Leoni C, Manzari C, Chiara M, Picardi E, Piancone E, et al. 2017. Transcriptomic analysis of nickel exposure in Sphingobium sp. ba1 cells using RNA-seq. Sci. Rep. 7: 8262. https://doi.org/10.1038/s41598-017-08934-7
- Clarridge JE. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17: 840-862. https://doi.org/10.1128/CMR.17.4.840-862.2004
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
- Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191. https://doi.org/10.1093/bioinformatics/btp033
- Smith AC, Hussey MA. 2005. Gram stain protocols. In: ACM Microbelibrary - Laboratory protocols. American Society for Microbiology, Washington, USA, http://www.microbelibrary.org
- Lowry OH, Rosebrough NJ, Farr AL, Randel JR. 1951. Protein estimation with folin phenol reagent. J. Biol. Chem. 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
- Kaushik A, Kansal A, Kumari S, Kaushik CP. 2009. Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. J. Hazard. Mater. 164: 265-270. https://doi.org/10.1016/j.jhazmat.2008.08.031
- Bharagava RN, Mishra S. 2018. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol. Environ. Saf. 147: 102-109. https://doi.org/10.1016/j.ecoenv.2017.08.040
- Schumann P, Weiss N, Stackebrandt E. 2001. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51: 1007-1010. https://doi.org/10.1099/00207713-51-3-1007
- Scott JR, Zahner D. 2006. Pili with strong attachments: Grampositive bacteria do it differently. Mol. Microbiol. 62: 320-330. https://doi.org/10.1111/j.1365-2958.2006.05279.x
- Yoon JH, Kang SJ, Schumann P, Oh TK. 2007. Cellulosimicrobium terreum sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 2493-2497. https://doi.org/10.1099/ijs.0.64889-0
- Chandra R, Bharagava RN, Kapley A, Purohit HJ. 2011. Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresour. Technol. 102: 2333-2341. https://doi.org/10.1016/j.biortech.2010.10.087
- Elwakeel KZ, El-Sadik HA, Abdel-Razek AS, Beheary MS. 2012. Environmental remediation of thorium (IV) from aqueous medium onto Cellulosimicrobium cellulans isolated from radioactive wastewater. Desalination Water Treat. 46: 1-9. https://doi.org/10.1080/19443994.2012.677405
- Delport J, Wakabayashi AT, Anantha RV, Lannigan R, John M, McCormick JK. 2014. Cellulosmicrobium cellulans isolated from a patient with acute renal failure. JMM Case Rep. 1.
- Gonzales Zamora JA, Camps N. 2018. Bacteremia caused by Cellulosimicrobium in a bone marrow transplant patient: A case report and literature review. IDCases 11: 64-66. https://doi.org/10.1016/j.idcr.2018.01.007
- Youssef AS, Beltagy EA, El-Shenawy MA, El-Assar SA. 2012. Production of k-carrageenase by Cellulosimicrobium cellulans isolated from Egyptian Mediterranean coast. Afr. J. Microbiol. Res. 6: 6618-6628.
- Rizvi F, Kanwal W, Faisal M. 2016. Chromate-reducing profile of bacterial strains isolated from industrial effluents. Pol. J. Environ. Stud. 25: 2121-2128. https://doi.org/10.15244/pjoes/61881
- Qin W, Fan F, Zhu Y, Huang X, Ding A, Liu X, et al. 2018. Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarboncontaminated soil. Braz. J. Microbiol. 49: 258-268. https://doi.org/10.1016/j.bjm.2017.04.014
- Vijver MG, Elliott EG, Peijnenburg WJGM, de Snoo GR. 2011. Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. Environ. Toxicol. Chem. 30: 1482-1487. https://doi.org/10.1002/etc.499
- Cabrero A, Fernandez S, Mirada F, Garcia J. 1998. Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Res. 32: 1355-1362. https://doi.org/10.1016/S0043-1354(97)00366-7
- Rial D, Vazquez JA, Murado MA. 2011. Effects of three heavy metals on the bacteria growth kinetics: a bivariate model for toxicological assessment. Appl. Microbiol. Biotechnol. 90: 1095-1109. https://doi.org/10.1007/s00253-011-3138-1
- Tunali S, Cabuk A, Akar T. 2006. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem. Eng. J. 115: 203-211. https://doi.org/10.1016/j.cej.2005.09.023
- Gupta K, Chatterjee C, Gupta B. 2012. Isolation and characterization of heavy metal tolerant Gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India. Biologia. 67: 827-836. https://doi.org/10.2478/s11756-012-0099-5
- Zhang Y, Chen S, Hao X, Su JQ, Xue X, Yan Y, et al. 2016. Transcriptomic analysis reveals adaptive responses of an Enterobacteriaceae Strain LSJC7 to arsenic exposure. Front. Microbiol. 7: 636.