DOI QR코드

DOI QR Code

Assessment of Bioremediation Potential of Cellulosimicrobium sp. for Treatment of Multiple Heavy Metals

  • Bhati, Tushar (University School of Biotechnology, Guru Gobind Singh Indraprastha University) ;
  • Gupta, Rahul (University School of Biotechnology, Guru Gobind Singh Indraprastha University) ;
  • Yadav, Nisha (University School of Biotechnology, Guru Gobind Singh Indraprastha University) ;
  • Singh, Ruhi (University School of Biotechnology, Guru Gobind Singh Indraprastha University) ;
  • Fuloria, Antra (University School of Biotechnology, Guru Gobind Singh Indraprastha University) ;
  • Waziri, Aafrin (University School of Biotechnology, Guru Gobind Singh Indraprastha University) ;
  • Chatterjee, Sayan (University School of Biotechnology, Guru Gobind Singh Indraprastha University) ;
  • Purty, Ram Singh (University School of Biotechnology, Guru Gobind Singh Indraprastha University)
  • Received : 2018.08.16
  • Accepted : 2018.11.07
  • Published : 2019.06.28

Abstract

In the present study, we have studied the bioremediating capability of bacterial strain against six heavy metals. The strain was isolated from river Yamuna, New Delhi which is a very rich repository of bioremediating flora and fauna. The strain was found to be Gram positive as indicated by Gram staining. The strain was characterized using 16s rRNA gene sequencing and the BlastN result showed its close resemblance with the Cellulosimicrobium sp. As each treatment has its own toxicity eliciting expression of different factors, we observed varied growth characteristics of the bacterial isolate and its protein content in response to different heavy metals. The assessment of its bioremediation capability showed that the strain Cellulosimicrobium sp. has potential to consume or sequester the six heavy metals in this study in the following order iron > lead > zinc > cooper > nickel > cadmium. Thus, the strain Cellulosimicrobium sp. isolated in the present study can be a good model system to understand the molecular mechanism behind its bioremediating capabilities under multiple stress conditions.

Keywords

References

  1. Gadd GM. 1992. Metals and microorganisms: A problem of definition. FEMS Microbiol. Lett. 100: 197-203. https://doi.org/10.1111/j.1574-6968.1992.tb05703.x
  2. Nies DH. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750. https://doi.org/10.1007/s002530051457
  3. Trevors JT, Oddie KM, Belliveau BH. 1985. Metal resistance in bacteria. FEMS Microbiol. Lett. 32: 39-54. https://doi.org/10.1111/j.1574-6968.1985.tb01181.x
  4. Bhattacharyya S, Chatterjee S, Basu S. 2008. Mercury pollution: The problem still persists. Everyman's Sci. 42: 279-286.
  5. Lima e Silva AAD, Carvalho MA, de Souza SA, Dias PMT, Silva Filho RGD, Saramago CS, et al. 2012. Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz. J. Microbiol. 43: 1620-1631. https://doi.org/10.1590/S1517-83822012000400047
  6. Bruins MR, Kapil S, Oehme FW. 2000. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45: 198-207. https://doi.org/10.1006/eesa.1999.1860
  7. Valko M, Morris H, Cronin M. 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem. 12: 1161-1208. https://doi.org/10.2174/0929867053764635
  8. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7: 60-72. https://doi.org/10.2478/intox-2014-0009
  9. Singh N, Kumar D, Sahu AP. 2007. Arsenic in the environment: effects on human health and possible prevention. J. Environ. Biol. 28: 359-365.
  10. Hopkins J. 1991. IARC Monographs on the evaluation of carcinogenic risks to humans: Volume 49. Chromium, nickel and welding. Food Chem. Toxicol. 29: 647-648.
  11. Ahluwalia SS, Goyal D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98: 2243-2257. https://doi.org/10.1016/j.biortech.2005.12.006
  12. Hussein H, Farag S, Moawad H. 2003. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab. J. Biotechnol. 7: 13-22.
  13. Waisberg M, Joseph P, Hale B, Beyersmann D. 2003. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192: 95-117. https://doi.org/10.1016/S0300-483X(03)00305-6
  14. Kapoor A, Viraraghavan T. 1995. Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 53: 195-206. https://doi.org/10.1016/0960-8524(95)00072-M
  15. Kang CH, Kwon YJ, So JS. 2016. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 89: 64-69. https://doi.org/10.1016/j.ecoleng.2016.01.023
  16. Sehgal M, Garg A, Suresh R, Dagar P. 2012. Heavy metal contamination in the Delhi segment of Yamuna basin. Environ. Monit. Assess. 184: 1181-1196. https://doi.org/10.1007/s10661-011-2031-9
  17. Volpicella M, Leoni C, Manzari C, Chiara M, Picardi E, Piancone E, et al. 2017. Transcriptomic analysis of nickel exposure in Sphingobium sp. ba1 cells using RNA-seq. Sci. Rep. 7: 8262. https://doi.org/10.1038/s41598-017-08934-7
  18. Clarridge JE. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17: 840-862. https://doi.org/10.1128/CMR.17.4.840-862.2004
  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  21. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191. https://doi.org/10.1093/bioinformatics/btp033
  22. Smith AC, Hussey MA. 2005. Gram stain protocols. In: ACM Microbelibrary - Laboratory protocols. American Society for Microbiology, Washington, USA, http://www.microbelibrary.org
  23. Lowry OH, Rosebrough NJ, Farr AL, Randel JR. 1951. Protein estimation with folin phenol reagent. J. Biol. Chem. 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  24. Kaushik A, Kansal A, Kumari S, Kaushik CP. 2009. Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. J. Hazard. Mater. 164: 265-270. https://doi.org/10.1016/j.jhazmat.2008.08.031
  25. Bharagava RN, Mishra S. 2018. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol. Environ. Saf. 147: 102-109. https://doi.org/10.1016/j.ecoenv.2017.08.040
  26. Schumann P, Weiss N, Stackebrandt E. 2001. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51: 1007-1010. https://doi.org/10.1099/00207713-51-3-1007
  27. Scott JR, Zahner D. 2006. Pili with strong attachments: Grampositive bacteria do it differently. Mol. Microbiol. 62: 320-330. https://doi.org/10.1111/j.1365-2958.2006.05279.x
  28. Yoon JH, Kang SJ, Schumann P, Oh TK. 2007. Cellulosimicrobium terreum sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 2493-2497. https://doi.org/10.1099/ijs.0.64889-0
  29. Chandra R, Bharagava RN, Kapley A, Purohit HJ. 2011. Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresour. Technol. 102: 2333-2341. https://doi.org/10.1016/j.biortech.2010.10.087
  30. Elwakeel KZ, El-Sadik HA, Abdel-Razek AS, Beheary MS. 2012. Environmental remediation of thorium (IV) from aqueous medium onto Cellulosimicrobium cellulans isolated from radioactive wastewater. Desalination Water Treat. 46: 1-9. https://doi.org/10.1080/19443994.2012.677405
  31. Delport J, Wakabayashi AT, Anantha RV, Lannigan R, John M, McCormick JK. 2014. Cellulosmicrobium cellulans isolated from a patient with acute renal failure. JMM Case Rep. 1.
  32. Gonzales Zamora JA, Camps N. 2018. Bacteremia caused by Cellulosimicrobium in a bone marrow transplant patient: A case report and literature review. IDCases 11: 64-66. https://doi.org/10.1016/j.idcr.2018.01.007
  33. Youssef AS, Beltagy EA, El-Shenawy MA, El-Assar SA. 2012. Production of k-carrageenase by Cellulosimicrobium cellulans isolated from Egyptian Mediterranean coast. Afr. J. Microbiol. Res. 6: 6618-6628.
  34. Rizvi F, Kanwal W, Faisal M. 2016. Chromate-reducing profile of bacterial strains isolated from industrial effluents. Pol. J. Environ. Stud. 25: 2121-2128. https://doi.org/10.15244/pjoes/61881
  35. Qin W, Fan F, Zhu Y, Huang X, Ding A, Liu X, et al. 2018. Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarboncontaminated soil. Braz. J. Microbiol. 49: 258-268. https://doi.org/10.1016/j.bjm.2017.04.014
  36. Vijver MG, Elliott EG, Peijnenburg WJGM, de Snoo GR. 2011. Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. Environ. Toxicol. Chem. 30: 1482-1487. https://doi.org/10.1002/etc.499
  37. Cabrero A, Fernandez S, Mirada F, Garcia J. 1998. Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Res. 32: 1355-1362. https://doi.org/10.1016/S0043-1354(97)00366-7
  38. Rial D, Vazquez JA, Murado MA. 2011. Effects of three heavy metals on the bacteria growth kinetics: a bivariate model for toxicological assessment. Appl. Microbiol. Biotechnol. 90: 1095-1109. https://doi.org/10.1007/s00253-011-3138-1
  39. Tunali S, Cabuk A, Akar T. 2006. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem. Eng. J. 115: 203-211. https://doi.org/10.1016/j.cej.2005.09.023
  40. Gupta K, Chatterjee C, Gupta B. 2012. Isolation and characterization of heavy metal tolerant Gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India. Biologia. 67: 827-836. https://doi.org/10.2478/s11756-012-0099-5
  41. Zhang Y, Chen S, Hao X, Su JQ, Xue X, Yan Y, et al. 2016. Transcriptomic analysis reveals adaptive responses of an Enterobacteriaceae Strain LSJC7 to arsenic exposure. Front. Microbiol. 7: 636.