DOI QR코드

DOI QR Code

Optimization of Streptococcus macedonicus MBF10-2 Lysate Production in Plant-based Medium by Using Response Surface Methodology

  • Andyanti, Dini (Pharmaceutical Microbiology and Biotechnology Research Group, Faculty of Pharmacy, Universitas Indonesia, UI Campus Depok) ;
  • Dani, Fatin M. (Pharmaceutical Microbiology and Biotechnology Research Group, Faculty of Pharmacy, Universitas Indonesia, UI Campus Depok) ;
  • Mangunwardoyo, Wibowo (Department of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, UI Campus Depok) ;
  • Sahlan, Muhamad (Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, UI Campus Depok) ;
  • Malik, Amarila (Pharmaceutical Microbiology and Biotechnology Research Group, Faculty of Pharmacy, Universitas Indonesia, UI Campus Depok)
  • Received : 2018.12.17
  • Accepted : 2019.02.08
  • Published : 2019.06.28

Abstract

Bacterial lysates have become a common ingredient for natural health care. Lactic acid bacteria (LAB) could serve as potential candidates for lysate production: the lactic acids produced by LAB have been utilized for their moisturizing, antimicrobial, and rejuvenating effects, while other substances provide topical benefits and health effects for the skin. Our study aimed to obtain lysate from a LAB S. macedonicus MBF 10-2 through an optimized fermentation using the Response Surface Methodology. Strain MBF10-2 was cultivated in a 2L fermenter tank in de Man Rogosa and Sharpe (MRS) medium and in plant-based peptone modified MRS, i.e. Soy-peptone and Vegitone. The duration and the medium composition (dextrose and soy peptone or proteose peptone) were adjusted to obtain an optimum production of cell lysate. Central Composite Design was employed for Design Expert 7.0.0 by adjusting 3 factors: dextrose (1%, 1.5%, 2%, 2.5%, 3%), soy or proteose peptone (0.5%, 0.75%, 1%, 1.25% and 1.5%), and duration of fermentation (8, 10, 12 14, and 16 h for MRS-Soy peptone and 15, 17, 19, 21, and 23 h for MRS Vegitone). Bacteriocin-Like Inhibitor Substance activity of lysate and pH were used as indicators. The optimum condition for lysate production using MRS Soy Peptone and Vegitone are as follows: dextrose concentration 2.5%, plant-based peptone 1.25%, while optimum fermentation duration were 11.18 h (MRS Soy Peptone) and 17 h (MRS Vegitone) with a starter concentration of 10% at $OD_{600nm}$ $0.2{\pm}0.05$. However, the standard MRS medium produced better quality lysate compared to MRS plant-based peptones.

Keywords

References

  1. Gueniche A, Benyacoub J, Blum S, Breton L, Castiel I. 2009. Probiotics for skin benefits, pp. 421-439. In Nutritional Cosmetics. Elsevier.
  2. Lahtinen S. 2012. Lactic acid bacteria : microbiological and functional aspects. 4th ed. Boca Raton. FL, CRC Press.
  3. Cotter PD, Hill C, Ross RP. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788. https://doi.org/10.1038/nrmicro1273
  4. Sidek NL, Halim M, Tan JS, Abbasiliasi S, Mustafa S, Ariff AB. 2018. Stability of bacteriocin-like inhibitory substance (BLIS) produced by Pediococcus acidilactici kp10 at different extreme conditions. BioMed. Res. Int. 2018: 5973484.
  5. De Vuyst L, Leroy F. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13: 194-199. https://doi.org/10.1159/000104752
  6. Tagg J, Bannister LV. 1979. Fingerprinting ${\beta}$-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J. Med. Microbiol. 12: 397-411. https://doi.org/10.1099/00222615-12-4-397
  7. Lew LC, Gan CY, Liong MT. 2012. Dermal Bioactives from Lactobacilli and Bifidobacteria. Ann. Microbiol. 63: 1047-1055. https://doi.org/10.1007/s13213-012-0561-1
  8. Meckfessel MH, Brandt S. 2014. The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. J. Am. Acad. Dermatol. 71: 177-184. https://doi.org/10.1016/j.jaad.2014.01.891
  9. Sanchez C, Villemeur MD. 2018. From Pharma to Beauty: The Potential of Bacterial Lysates The Potential of Bacterial Lysates. Available from http://www.lallemandpharma.com/wp-content/uploads/2018/04/EBR-April2018-Bacterial-lysates-potential.pdf. Accessed April 20, 2018.
  10. Guéniche A, Bastien P, Ovigne JM, Kermici M, Courchay G, Chevalier V, et al. 2010. Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp. Dermatol. 19: e1-e8. https://doi.org/10.1111/j.1600-0625.2009.01012.x
  11. Volz T, Skabytska Y, Guenova E, Chen KM, Frick JS, Kirschning S, et al. 2014. Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. J. Invest. Dermatol. 134: 96-104. https://doi.org/10.1038/jid.2013.291
  12. Georgalaki MD, Van Den Berghe E, Kritikos D, Devreese B, Van Beeumen J, Kalantzopoulos G, et al. 2002. Macedocin, a foodgrade lantibiotic produced by Streptococcus macedonicus ACADC 198. Appl. Environ. Microbiol. 68: 5891-903. https://doi.org/10.1128/AEM.68.12.5891-5903.2002
  13. Vuyst LD, Tsakalidou E. 2008. Streptococcus macedonicus, a multifunctional and promising species for dairy fermentations. Int. Dairy J. 18: 476-485. https://doi.org/10.1016/j.idairyj.2007.10.006
  14. Van den Berghe E, Skourtas G, Tsakalidou E, De Vuyst L. 2006. Streptococcus macedonicus ACA-DC 198 produces the lantibiotic, macedocin, at temperature and pH conditions that prevail during cheese manufacture. Int. J. Food Microbiol. 107: 138-147. https://doi.org/10.1016/j.ijfoodmicro.2005.08.023
  15. Georgalaki MD, Sarantinopoulos P, Ferreira ES, De Vuyst L, Kalantzopoulos G, Tsakalidou E. 2000. Biochemical properties of Streptococcus macedonicus strains isolated from Greek Kasseri cheese. J. Appl. Microbiol. 88: 817-825. https://doi.org/10.1046/j.1365-2672.2000.01055.x
  16. Grazia SE, Sumayyah S, Haiti FS, Sahlan M, Heng NCK, Malik A. 2017. Bacteriocin-like inhibitory substance (BLIS) activity of Streptococcus macedonicus MBF10-2 and its synergistic action in combination with antibiotics. Asian Pac. J. Trop. Med. 10: 1140-1145. https://doi.org/10.1016/j.apjtm.2017.11.001
  17. Lorenz TC. 2012. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. (63): e3998.
  18. Silva CCG, Silva SPM, Ribeiro SC. 2018. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 9: 594. https://doi.org/10.3389/fmicb.2018.00594
  19. Abbasiliasi S, Tan JS, Tengku Ibrahim TA, Bashokouh F, Ramakrishnan NR, Mustafa S, et al. 2017. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Adv. 7: 29395-29420. https://doi.org/10.1039/C6RA24579J
  20. Malik A, Radji M, Kralj S, Dijkhuizen L. 2009. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. FEMS Microbiol. Lett. 300: 131-138. https://doi.org/10.1111/j.1574-6968.2009.01772.x
  21. De Man J, Rogosa M, Sharpe M. 1960. A Medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 23: 130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  22. Pujato SA, Guglielmotti DM, Martinez-Garcia M, Quiberoni A, Mojica FJM. 2017. Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. Int. J. Food Microbiol. 257: 128-137. https://doi.org/10.1016/j.ijfoodmicro.2017.06.009
  23. Ng HS, Chai CXY, Chow YH, Loh WLC, Yim HS, Tan JS, et al. 2018. Direct recovery of Bacillus subtilis xylanase from fermentation broth with an alcohol/salt aqueous biphasic system. J. Biosci. Bioeng. 125: 585-589. https://doi.org/10.1016/j.jbiosc.2017.12.010
  24. Kareb O, Champagne CP, Jean J, Gomaa A, Aider M. 2018. Effect of electro-activated sweet whey on growth of Bifidobacterium, Lactobacillus, and Streptococcus strains under model growth conditions. Food Res. Int. 103: 316-325. https://doi.org/10.1016/j.foodres.2017.10.060
  25. Salzano AM, Novi G, Arioli S, Corona S, Mora D, Scaloni A. 2013. Mono-dimensional blue native-PAGE and bi-dimensional blue native/urea-PAGE or/SDS-PAGE combined with nLC-ESI-LIT-MS/MS unveil membrane protein heteromeric and homomeric complexes in Streptococcus thermophilus. J. Proteomics. 94: 240-261. https://doi.org/10.1016/j.jprot.2013.09.007
  26. Cappannella E, Benucci I, Lombardelli C, Liburdi K, Bavaro T, Esti M. 2016. Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: Bench-scale fluidized-bed reactor study. Food Chem. 210: 49-55. https://doi.org/10.1016/j.foodchem.2016.04.089
  27. Dimic G. 2006. Characteristics of the Leuconostoc mesenteroides subsp. mesenteroides strains from fresh vegetables. Acta. Period Technol. 37: 3-11. https://doi.org/10.2298/APT0637003D
  28. Othman M, Ariff AB, Wasoh H, Kapri MR, Halim M. 2017. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition. AMB Express. 7: 215. https://doi.org/10.1186/s13568-017-0519-6
  29. Liu W, Pang H, Zhang H, Cai Y. 2014. Biodiversity of lactic acid bacteria, pp.103-203. in Lactic Acid Bacteria. Springer.
  30. Georgalaki M, Papadimitriou K, Anastasiou R, Pot B, Van Driessche G, Devreese B, et al. 2013. Macedovicin, the second foodgrade lantibiotic produced by Streptococcus macedonicus ACADC 198. Food Microbiol. 33: 124-130. https://doi.org/10.1016/j.fm.2012.09.008
  31. Colla LL, Mangano A, Mangano A, Albertin A. 2009. Effects of nonpathogenic gram‐negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, doubleblind, placebo-controlled clinical study. Br. J. Dermatol. 161: 477-478. https://doi.org/10.1111/j.1365-2133.2009.09265.x
  32. Pathak M, Martirosyan D. 2012. Optimization of an effective growth medium for culturing probiotic bacteria for applications in strict vegetarian food products. FFHDJ. 2: 369-378. https://doi.org/10.31989/ffhd.v2i10.75
  33. Bustos G, Moldes AB, Cruz JM, Domínguez JM. 2004. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. J. Agric. Food Chem. 54: 801-808.
  34. Rodrigues LR, Teixeira JA, Oliveira R. 2006. Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem. Eng. J. 32: 135-142. https://doi.org/10.1016/j.bej.2006.09.012
  35. Zhao Y, Wang Y, Song Z, Shan C, Zhu R, Liu F. 2016. Development of a simple, low-cost and eurytopic medium based on Pleurotus eryngii for lactic acid bacteria. AMB Express. 6: 65. https://doi.org/10.1186/s13568-016-0235-7