DOI QR코드

DOI QR Code

배가스 중 CO2 분리/회수로의 응용을 위한 CO2 및 N2 하이드로퀴논 크러스레이트의 형성 거동 연구

Study on Formation Behaviors of Hydroquinone Clathrates with CO2 and N2 for Application to Selective CO2 Separation/Recovery from Flue Gases

  • 이동원 (공주대학교 환경공학과) ;
  • 윤지호 (한국해양대학교 에너지자원공학과) ;
  • 이종원 (공주대학교 환경공학과)
  • LEE, DONGWON (Department of Environmental Engineering, Kongju National University) ;
  • YOON, JI-HO (Department of Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • LEE, JONG-WON (Department of Environmental Engineering, Kongju National University)
  • 투고 : 2019.05.13
  • 심사 : 2019.06.30
  • 발행 : 2019.06.30

초록

Effects of various reaction factors such as pressure, time, and temperature on clathrate formation were investigated for hydroquinone with $CO_2$ and $N_2$. Experimental and spectroscopic results indicate that $CO_2$ plays more preferential role in forming hydroquinone clathrates than $N_2$. These results can be used in application of selective $CO_2$ separation from flue gases with the formation of clathrate compounds.

키워드

SSONB2_2019_v30n3_289_f0001.png 이미지

Fig. 1. Schematic diagram of the experimental instrument including a high-pressure reactor and a data acquisition computer

SSONB2_2019_v30n3_289_f0002.png 이미지

Fig. 2. 13C NMR spectra for the α- and the β-forms of hydroquinone

SSONB2_2019_v30n3_289_f0003.png 이미지

Fig. 3. 13C NMR spectra for the hydroquinone samples after the reactions with CO2 gas at 10 bar and 298.2 K

SSONB2_2019_v30n3_289_f0004.png 이미지

Fig. 4. 13C NMR spectra for the hydroquinone samples after the reactions with N2 gas at various pressures and 298.2 K for 14 days

SSONB2_2019_v30n3_289_f0005.png 이미지

Fig. 5. Pressure changes during the reactions with CO2 gas at various temperature conditions

SSONB2_2019_v30n3_289_f0006.png 이미지

Fig. 6. Pressure changes during the reactions with N2 gas at various temperature conditions

참고문헌

  1. M. T. Ho, G. Leamon, G. W. Allinson, and D. E. Wiley, "Economics of $CO_2$ and Mixed Gas Geosequestration of Flue Gas Using Gas Separation Membranes", Ind. Eng. Chem. Res., Vol. 45, No. 8, 2006, pp. 2546-2552, doi: https://doi.org/10.1021/ie050549c.
  2. H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, "Progress in Carbon Dioxide Separation and Capture: A Review", J. Environ. Sci., Vol. 20, No. 1, 2008, pp. 14-27, doi: https://doi.org/10.1016/S1001-0742(08)60002-9.
  3. S. Ahn, H. J. Song, J. W. Park, J. H. Lee, I. Y. Lee, and K. R. Jang, "Characterization of Metal Corrosion by Aqueous Amino Acid Salts for the Capture of $CO_2$", Korean J. Chem. Eng., Vol. 27, No. 5, 2010, pp. 1576-1580, doi: https://doi.org/10.1007/s11814-010-0246-z.
  4. T. H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones, and S. Nair, "A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals", Angew. Chem. Int. Ed., Vol. 49, No. S1, 2010, pp. 9863-9866, doi: https://doi.org/10.1002/anie.201006141.
  5. H. G. Jin, S. H. Han, Y. M. Lee, and Y. K. Yeo, "Modeling and Control of $CO_2$ Separation Process with Hollow Fiber Membrane Modules", Korean J. Chem. Eng., Vol. 28, No. 1, 2011, pp. 41-48, doi: https://doi.org/10.1007/s11814-010-0317-1.
  6. E. S. Kikkinides, R. T. Yang, and S. H. Cho, "Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption", Ind. Eng. Chem. Res., Vol. 32, No. 11, 1993, pp. 2714-2720, doi: https://doi.org/10.1021/ie00023a038.
  7. K. T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho, and R. T. Yang, "Comparison of Activated Carbon and Zeolite 13C for $CO_2$ Recovery from Flue Gas by Pressure Swing Adsorption", Ind. Eng. Chem. Res., Vol. 34, No. 2, 1995, pp. 591-598, doi: https://doi.org/10.1021/ie00041a020.
  8. B. K. Na, K. K. Koo, H. M. Eum, H. Lee, and H. K. Song, "$CO_2$ Recovery from Flue Gas by PSA Process using Activated Carbon", Korean J. Chem. Eng., Vol. 18, No. 2, 2001, pp. 220-227, doi: https://doi.org/10.1007/BF02698463.
  9. M. Binns, S. Y. Oh, D. H. Kwak, and J. K. Kim, "Analysis of Hybrid Membrane and Chemical Absorption Systems for $CO_2$ Capture", Korean J. Chem. Eng., Vol. 32, No. 3, 2015, pp. 383-389, doi: https://doi.org/10.1007/s11814-014-0188-y.
  10. S. P. Kang and H. Lee, "Recovery of $CO_2$ from Flue Gas Using Gas Hydrate: Thermodynamic Verification through Phase Equilibrium Measurements", Environ. Sci. Technol., Vol. 34, No. 20, 2000, pp. 4397-4400, doi: https://doi.org/10.1021/es001148l.
  11. E. D. Sloan and C. A. Koh, "Clathrate Hydrates of Natural Gases", CRC Press, USA, 2008, doi: https://doi.org/10.1201/9781420008494.
  12. D. E. Palin, and H. M. Powell, "The Structure of Molecular Compounds. Part VI. The ${\beta}$-type Clathrate Compounds of Quinol", J. Chem. Soc., Vol. 1, 1948, pp. 815-821, doi: https://doi.org/10.1039/JR9480000815.
  13. J. A. Ripmeester, "Application of Solid State $^{13}C$ NMR to the Study of Polymorphs, Clathrates and Complexes", Chem. Phys. Lett., Vol. 74, No. 3, 1980, pp. 536-538, doi: https://doi.org/10.1016/0009-2614(80)85269-9.
  14. J. L. Atwood, J. E. D. Davies, and D. D. MacNicol, "Inclusion Compounds", Academic Press, USA, 1984, doi: https://doi.org/10.1016/0160-9327(86)90068-2.
  15. M. Kubinyi, F. Billes, A. Grofcsik, and G. Keresztury, "Vibrational Spectra and Normal Coordinate Analysis of Phenol and Hydroquinone", J. Mol. Struct., Vol. 266, 1992, pp. 339-344, doi: https://doi.org/10.1016/0022-2860(92)80089-Z.
  16. J. W. Lee, Y. Lee, S. Takeya, T. Kawamura, Y. Yamamoto, Y. J. Lee, and J. H. Yoon, "Gas-Phase Synthesis and Characterization of $CH_4$-Loaded Hydroquinone Clathrates", J. Phys. Chem. B, Vol. 114, No. 9, 2010, pp. 3254-3258, doi: https://doi.org/10.1021/jp911822e.
  17. J. W. Lee, K. J. Choi, Y. Lee, and J. H. Yoon, "Spectroscopic Identification and Conversion Rate of Gaseous Guest-Loaded Hydroquinone Clathrates", Chem. Phys. Lett., Vol. 528, 2012, pp. 34-38, doi: https://doi.org/10.1016/j.cplett.2012.01.033.
  18. J. W. Lee, S. P. Kang, and J. H. Yoon, "Highly Selective Enclathration of Ethylene from Gas Mixtures", J. Phys. Chem. C, Vol. 118, No. 12, 2014, pp. 6059-6063, doi: https://doi.org/10.1021/jp4124716.