DOI QR코드

DOI QR Code

Measurement of flash point for binary mixtures of Ethanol, 1-propanol, 2-propanol and 2,2,4-trimethylpentane

Ethanol, 1-propanol, 2-propanol 그리고 2,2,4-trimethylpentane 이성분 혼합계에 대한 인화점 측정

  • Hwang, In Chan (Department of Fire and Disaster Protection Engineering, Woosong University) ;
  • In, Se Jin (Department of Fire and Disaster Protection Engineering, Woosong University)
  • 황인찬 (우송대학교 소방방재학과) ;
  • 인세진 (우송대학교 소방방재학과)
  • Received : 2019.02.27
  • Accepted : 2019.04.09
  • Published : 2019.06.30

Abstract

Flammable substances, such as organic solvents, are commonly used in laboratories and industrial processes. The flash point of flammable liquid mixtures is a very important parameter for characterizing the ignition and explosion hazards, and the flash points of mixtures of $C_2{\sim}C_3$ alcohols and 2,2,4-trimethylpentane were measured in the present study. The 2,2,4-trimethylpentane is an important component of gasoline and is frequently used in the petroleum industry as a solvent. Lower flash point data were measured for the binary systems {ethanol + 2,2,4-trimethylpentane}, {1-propanol + 2,2,4-trimethylpentane}, and {2-propanol + 2,2,4-trimethylpentane}. The flash point measurements were carried out according to the standard test method (ASTM D3278) using a Stanhope-Seta closed cup flash point tester. The measured flash points were compared with the predicted values calculated using Raoult's law and also following $G^E$ models: Wilson, Non-Random Two Liquid (NRTL) and UNIversal QUAsiChemical (UNIQUAC). These models were able to predict the experimental flash points for different compositions of {$C_2{\sim}C_3$ alcohols + 2,2,4-trimethylpentane} mixtures with minimal deviations. The average absolute deviation between the predicted and measured lower flash point was less than 1.28 K. A minimum flash point behaviour was observed in all of the systems as in the many observed cases for the hydrocarbon and alcohol mixtures.

산업현장에서 액체의 화재 및 폭발 위험을 결정하는데 사용되는 가장 중요한 변수 중 하나인 인화점은 가연 물질에 대한 화재 위험성을 나타내는 지표이며 위험물의 안전성 평가를 위한 중요한 정보로 활용된다. 본 연구의 목적은 석유 화학 공정에서 아주 중요한 용매로 사용되는 알킬 알코올과 함께 파라핀계 탄화수소의 대표적인 화합물인 2,2,4-trimethylpentane을 포함하는 이성분 혼합물인 {ethanol + 2,2,4-trimethylpentane}, {1-propanol + 2,2,4-trimethylpentane} 그리고 {2-propanol + 2,2,4-trimethylpentane} 계에 대한 인화점을 Stanhope-Seta 밀폐식 인화점 측정기를 이용하여 측정하였다. 각 이성분계 혼합물에 대한 인화점을 예측하기 위해 Raoult's의 법칙, Wilson, NRTL 그리고 UNIQUAC 파라미터를 이용하였고 실험 결과와 비교해 보았다. 비교 결과 Raoult's의 법칙을 제외하고 모든 실험값과 예측값과 실험값은 최대 편차가 1.28 K이내의 결과로 유사함을 보였다. 또한 측정된 모든 계에서 최소인화점은 발견되지 않았다.

Keywords

CJGSB2_2019_v25n2_140_f0001.png 이미지

Figure 1. The comparison of the flash point prediction curves with the experimental data for the binary system {ethanol (1) + 2,2,4-trimethylpentane (2)}.

CJGSB2_2019_v25n2_140_f0002.png 이미지

Figure 2. The comparison of the flash point prediction curves with the experimental data for the binary system {1-propanol (1) + 2,2,4-trimethylpentane (2)}.

CJGSB2_2019_v25n2_140_f0003.png 이미지

Figure 3. The comparison of the flash point prediction curves with the experimental data for the binary system {2-propanol (1) + 2,2,4-trimethylpentane (2)}.

Table 1. The Densities, Purities, Flash Point and UNIQUAC Parameters of Chemicals Used in This Work

CJGSB2_2019_v25n2_140_t0001.png 이미지

Table 2. The Antoine Coefficients of the Components

CJGSB2_2019_v25n2_140_t0002.png 이미지

Table 3. The Optimized Binary Parameters of the Wilson, NRTL and UNIQUAC Equations for Each Binary System

CJGSB2_2019_v25n2_140_t0003.png 이미지

Table 4. The Experimental and Predicted Flash Points for Each Binary System

CJGSB2_2019_v25n2_140_t0004.png 이미지

References

  1. Lees, F. P., "Loss Prevention in the Process Industries," 2nd edition, Butterworth-Heinemann, Oxford, U.K. (1996).
  2. Crowl, D. A., and Louvar, J. F., "Chemical Process Safety: Fundamentals with Applications," Prentice Hall, Englewood Cliffs, N.Y. (1990).
  3. Poor, H. M., and Sadrameli, S. M., "Calculation and Prediction of Binary Mixture Flash Point Using Correlative and Predictive Local Composition Models." Fluid Phase Equilib, 440, 95-102 (2017). https://doi.org/10.1016/j.fluid.2017.03.006
  4. Carareto, N. D., Kimura, C. Y., Oliveira, E. C., Costa, M. C., Meirelles, A. J., "Flash Points of Mixtures Containing Ethyl Esters or Ethylic Biodiesel and Ethanol," Fuel, 96, 319-326 (2012). https://doi.org/10.1016/j.fuel.2012.01.025
  5. Kim, A. N., You, Y., and Kim, S. C., "Synthesis and Evaluation of New Nonflammable Cleaning Agents," Clean. Technol., 19(2), 184-188 (2013). https://doi.org/10.7464/ksct.2013.19.2.184
  6. Dabelstein, W., Reglitzky, A., Schütze, A., and Reders, K., "Automotive Fuels," Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH (2007).
  7. Vora, B. V., Kocal, J. A., Barger, P. T., Schmidt, R. J., and Johnson, J. A., "Alkylation," Kirk-Othmer Encyclopedia of Chemical Technology (2003).
  8. Liaw, H. J., Tang, C. L., and Lai, J. S., "A Model for Predicting the Flash Point of Ternary Flammable Solution of Liquid," Combust. Flame, 138, 308-319 (2004). https://doi.org/10.1016/j.combustflame.2004.06.002
  9. Vidal, M., Rogers, W. J., and Mannan, M. S., "Prediction of Minimum Flash Point Behavious for Binary Mixtures," Process Saf. Environ. Protect., 84, 1-9 (2006). https://doi.org/10.1205/psep.05041
  10. Wilson, G. M., and Deal, C. H., "Activity Coefficients and Molecular Structure," Ind. Chem. Fundam., 1, 20-23 (1962). https://doi.org/10.1021/i160001a003
  11. Renon, H., and Prausnitz, J. M., "Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures," AIChE J., 14, 135-144 (1968). https://doi.org/10.1002/aic.690140124
  12. Abrams, D. S., and Prausnitz, J. M., "A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems," AIChE J., 21, 116-128 (1975). https://doi.org/10.1002/aic.690210115
  13. Dortmund Data Bank Software Package (DDBSP), version 2006 professional, Software and Separation Technology GmbH. (http://www.ddbst.de).
  14. National Fire Protection Association, Batterymarch Park, Quincy, MA. National Fire Codes, 7 (1985).
  15. American Society for Testing Materials, Annual Book of ASTM Standards, 6 (1999).
  16. Oh, I. S., and In, S. J., "The Measurement and Prediction of Flash Point for Binary Mixtures of Methanol, Ethanol, 2-Propanol and 1-Butanol at 101.3 kPa," J. Korean Institute Fire Eng., 29(5), 1-6 (2015).
  17. In, S. J., "Flash Point for Binary Mixtures of Methylcyclohexane, n-Heptane and p-Xylene," J. Ind. Eng. Chem., 32, 327-331 (2015). https://doi.org/10.1016/j.jiec.2015.09.013
  18. Hwang I. C., and In, S. J., "The Measurement of Flash Point for Binary Mixtures of Toluene, Methylcyclohexane, n-heptane and Ethylbenzene at 101.3 kPa," J. Korean Institute Fire Eng., 31(3), 1-6 (2017).
  19. Hwang, I. C., Kim, S. W., and In, S. J., "Measurement of Flash Point for Binary Mixtures of Methanol, Ethanol, 1-propanol and Toluene," J. Korean Institute Fire Eng., 32(1), 1-6 (2018).
  20. Le Chatelier, H., "Estimation of Firedamp by Flammability Limits," Ann Mines, 19, 388-395 (1891).
  21. Poling, B. E., Prausnitz, J. M., and O'connell, J. P., "The Properties of Gases and Liquids," 5th Edition, McGraw-Hill, N.Y. (2001).
  22. Oh, J. H., Hwang, I. C., and Park, S. J., "Isothermal Vapor-Liquid Equilibrium at 333.15 K and Excess Molar Volumes and Refractive Indices at 298.15 K for the Mixtures of Di-methyl Carbonate, Ethanol and 2,2,4-trimethylpentane," Fluid Phase Equilib., 276, 142-149 (2009). https://doi.org/10.1016/j.fluid.2008.11.001
  23. Hwang, I. C., Jo, M. Y., Kwak, H.Y., Park, S. J., and Han, K. J., "Isothermal VLE and $V^E$ at 303.15 K for the Binary and Ternary Mixtures of Di-isopropyl ether (DIPE) + 1-propanol + 2,2,4-trimethylpentane," J. Chem. Eng. Data, 52, 2503-2508 (2007). https://doi.org/10.1021/je700460w
  24. Hiaki, T, Tsuji, T., and Hongo, M., "Isothermal Vapor-Liquid Equilibria for 2-propanol + octane and 2-propanol + 2,2,4-trimethylpentane at 348.15 K," Fluid Phase Equilib., 125, 79-87 (1996). https://doi.org/10.1016/S0378-3812(96)03078-6

Cited by

  1. The Measurement of Flash Point for Binary Mixtures of 2,2,4-Trimethylpentane, Methylcyclohexane, Ethylbenzene and p-xylene at 101.3 kPa vol.26, pp.4, 2020, https://doi.org/10.7464/ksct.2020.26.4.279