DOI QR코드

DOI QR Code

A NEW MAPPING FOR FINDING A COMMON SOLUTION OF SPLIT GENERALIZED EQUILIBRIUM PROBLEM, VARIATIONAL INEQUALITY PROBLEM AND FIXED POINT PROBLEM

  • Farid, Mohammad (Unaizah College of Engineering Qassim University) ;
  • Kazmi, Kaleem Raza (Department of Mathematics Faculty of Science and Arts - Rabigh King Abdulaziz University)
  • 투고 : 2018.09.03
  • 심사 : 2019.04.23
  • 발행 : 2019.06.30

초록

In this paper, we introduce and study a general iterative algorithm to approximate a common solution of split generalized equilibrium problem, variational inequality problem and fixed point problem for a finite family of nonexpansive mappings in real Hilbert spaces. Further, we prove a strong convergence theorem for the sequences generated by the proposed iterative scheme. Finally, we derive some consequences from our main result. The results presented in this paper extended and unify many of the previously known results in this area.

키워드

참고문헌

  1. H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, London, (2011).
  2. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145.
  3. C. Byrne, Y. Censor, A. Gibali and S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal., 13 (4) (2012), 759-775.
  4. L.C. Ceng and J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 214 (2008), 186-201. https://doi.org/10.1016/j.cam.2007.02.022
  5. Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Physics in Medicine and Biology, 51 (2006), 2353-2365. https://doi.org/10.1088/0031-9155/51/10/001
  6. Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323. https://doi.org/10.1007/s11075-011-9490-5
  7. P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.
  8. B. Djafari Rouhani, K. R. Kazmi and Mohd Farid, Common solutions to some systems of variational inequalities and fixed point problems, Fixed Point Theory, 18 (1) (2017), 167-190. https://doi.org/10.24193/fpt-ro.2017.1.14
  9. P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equation, Acta Mathematica, 115 (1966), 271-310. https://doi.org/10.1007/BF02392210
  10. A. Kangtunyakarn and S. Suantai, A new mapping for finding common solutions of equilibrium problems and fixed point problems of finite family of nonexpansive mappings, Nonlinear Analysis, 71 (10) (2009), 4448-4460. https://doi.org/10.1016/j.na.2009.03.003
  11. K.R. Kazmi, A. Khaliq and A. Raouf, Iterative approximation of solution of generalized mixed set-valued variational inequality problem, Math. Inequal. Appl., 10 (2007), 677-691.
  12. K.R. Kazmi and S.H. Rizvi, Iterative algorithms for generalized mixed equilibrium problems, J. Egyptian Math. Soc., 21 (3) (2013), 340-345. https://doi.org/10.1016/j.joems.2013.03.007
  13. K.R. Kazmi and S.H. Rizvi, Iterative approximation of a common solution of a split equilibrium problem, a variational inequality problem and a fixed point problem, J. Egyptian Math. Soc., 21 (2013), 44-51. https://doi.org/10.1016/j.joems.2012.10.009
  14. K.R. Kazmi and S.H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optimization Letters, 8 (3) (2014), 1113-1124. https://doi.org/10.1007/s11590-013-0629-2
  15. G. Marino and H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318 (2006), 43-52. https://doi.org/10.1016/j.jmaa.2005.05.028
  16. A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283. https://doi.org/10.1007/s10957-011-9814-6
  17. A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse Problems, 26 (5) (2010), 6 Pages.
  18. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (4) (1967), 595-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  19. R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Transactions of the American Mathematical Society, 149 (1970), 75-88. https://doi.org/10.1090/S0002-9947-1970-0282272-5
  20. T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305 (2005), 227-239. https://doi.org/10.1016/j.jmaa.2004.11.017
  21. S. Takahashi and W. Takahashi, Viscosity approximation method for equilibrium problems and fixed point problems in Hilbert space, J. Math. Anal. Appl., 331 (2007), 506-515. https://doi.org/10.1016/j.jmaa.2006.08.036
  22. H.K. Xu, Viscosity approximation method for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059