DOI QR코드

DOI QR Code

Mitigation effects of red Platycodon grandiflorum extract on lipopolysaccharide-induced inflammation in splenocytes isolated from mice

홍도라지 추출물이 마우스에서 분리한 비장세포에서 lipopolysaccharide로 유도된 염증에 미치는 영향

  • Received : 2019.05.13
  • Accepted : 2019.06.03
  • Published : 2019.06.30

Abstract

Purpose: Platycodon grandiflorum (PG) is known to have effective antimicrobial and anticancer activity. The main bioactive components of PG are saponins, and these could contribute to anti-inflammatory activity. However, little is known about the anti-inflammatory effect of PG. In this study, we aim to assess the anti-inflammatory response to Red PG Extract (RPGE) in splenocytes under ex vivo conditions. Methods: The cell viability of isolated splenocytes taken from mice was analyzed by performing a Cell Counting Kit-8 assay. The productions of nitric oxide (NO) and cytokines (specifically interleukin-6 (IL-6) and interleukin-10 (IL-10)) were measured utilizing Griess reagent and ELISA, respectively. Results: We found that co-treatment with RPGE and Lipopolysaccharide (LPS) decreased isolated splenocyte proliferation as compared with that of the LPS-stimulated control. We also observed that RPGE markedly suppressed NO synthesis and IL-6 production that was induced by LPS. There were no significant differences of IL-10 production between co-treatment with RPGE plus LPS and treatment with LPS alone. Conclusion: When taken together, our data has shown that RPGE mitigates LPS-induced inflammation in splenocytes isolated from mice. Further research is surely needed to confirm the anti-inflammation effects of RPGE in an in vivo model.

본 연구에서는 LPS로 활성화된 마우스 비장세포에서 Platycodin D가 함유된 홍도라지 추출물의 항염증 효능을 알아보기 위하여 비장세포 증식능과 NO 생성 및 염증 관련 사이토카인을 측정하였다. 결과를 요약하면 다음과 같다. 1. 마우스 비장세포에 $1{\mu}g/mL$ 농도의 LPS를 처리하였을 때 비장세포의 증식능이 3배 이상 증가하였으며 홍도라지 추출물 처리 시 증가 된 증식능이 유의하게 감소되었다. 2. 마우스 비장세포에 $1{\mu}g/mL$ 농도의 LPS를 처리하였을 때 비장세포의 NO생성이 증가하였으며, 홍도라지 추출물 처리 시 농도 의존적으로 증가 된 NO생성이 줄어들었다. 3. 마우스 비장세포에 $1{\mu}g/mL$ 농도의 LPS를 처리하였을 때 염증관련 사이토카인 IL-6와 항염증 사이토카인 IL-10 분비가 증가되었으며, 홍도라지 추출물 처리 시 농도 의존적으로 증가 된 IL-6의 분비가 감소되었다. IL-10 분비에는 유의적인 차이가 없었다. 위의 결과를 종합하여 볼 때, 본 연구는 홍도라지 추출물이 ex vivo 실험을 통해 항염증관련 인자들의 조절을 통하여 과민면역반응을 효과적으로 억제한다는 근거를 확인하였다. 이에 동물실험과 인체적용시험을 통해 홍도라지 추출물의 과민면역반응 억제 효능에 관한 후속 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Kovarik J. From immunosuppression to immunomodulation: current principles and future strategies. Pathobiology 2013; 80(6): 275-281. https://doi.org/10.1159/000346960
  2. Song MR, Kang MH, Park JS, Jo HK. A comparative study of the prevalence of allergic disease between rural and urban elementary school students. Child Health Nurs Res 2012; 18(1): 29-35. https://doi.org/10.4094/jkachn.2012.18.1.29
  3. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017; 9(6): 7204-7218. https://doi.org/10.18632/oncotarget.23208
  4. Park SO, Han YW, Aleyas AG, George JA, Yoon HA, Eo SK. The kinetics of secondary response of antigen-specific CD4+ T cells primed in vitro with antigen. Immune Netw 2006; 6(2): 93-101. https://doi.org/10.4110/in.2006.6.2.93
  5. Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules 2016; 21(10): E1321. https://doi.org/10.3390/molecules21101321
  6. Han HS, Jang E, Shin JS, Inn KS, Lee JH, Park G, et al. Kyungheechunggan-tang-01, a new herbal medication, suppresses LPS-induced inflammatory responses through JAK/STAT signaling pathway in raw 264.7 macrophages. Evid Based Complement Alternat Med 2017; 2017: 7383104.
  7. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol 2005; 5(8): 606-616. https://doi.org/10.1038/nri1669
  8. Lee CW, Ko EJ, Joo HG. Immunostimulatory effects of BCG-CWS on the proliferation and viability of mouse spleen cells. Korean J Vet Res 2012; 52(2): 89-97. https://doi.org/10.14405/kjvr.2012.52.2.089
  9. Erridge C, Bennett-Guerrero E, Poxton IR. Structure and function of lipopolysaccharides. Microbes Infect 2002; 4(8): 837-851. https://doi.org/10.1016/S1286-4579(02)01604-0
  10. Wink DA, Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998; 25(4-5): 434-456. https://doi.org/10.1016/S0891-5849(98)00092-6
  11. Matsuda H, Morikawa T, Ando S, Toguchida I, Yoshikawa M. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg Med Chem 2003; 11(9): 1995-2000. https://doi.org/10.1016/S0968-0896(03)00067-1
  12. Calixto JB, Campos MM, Otuki MF, Santos AR. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 2004; 70(2): 93-103. https://doi.org/10.1055/s-2004-815483
  13. Bachus H, Kaur K, Papillion AM, Marquez-Lago TT, Yu Z, Ballesteros-Tato A, et al. Impaired tumor-necrosis-factor-${\alpha}$-driven dendritic cell activation limits lipopolysaccharide-induced protection from allergic inflammation in infants. Immunity 2019; 50(1): 225-240.e4. https://doi.org/10.1016/j.immuni.2018.11.012
  14. Hong MW. Statistical analyses of Platycodi radix prescriptions. Korean J Pharmacogn 1975; 19: 177-188.
  15. Lee SJ, Bang WS, Hong JY, Kwon OJ, Shin SR, Yoon KY. Antioxidant and antimicrobial activities of black Doraji (Platycodon grandiflorum). Korean J Food Preserv 2013; 20(4): 510-517. https://doi.org/10.11002/kjfp.2013.20.4.510
  16. Wang C, Schuller Levis GB, Lee EB, Levis WR, Lee DW, Kim BS, et al. Platycodin D and D3 isolated from the root of Platycodon grandiflorum modulate the production of nitric oxide and secretion of TNF-alpha in activated RAW 264.7 cells. Int Immunopharmacol 2004; 4(8): 1039-1049. https://doi.org/10.1016/j.intimp.2004.04.005
  17. Hwang IG, Woo KS, Jeong HS. Biological activity and heat treatment processing of foods. Food Sci Ind 2011; 44(3): 56-65.
  18. Kim SY, Lee YJ, Park DS, Kim HR, Cho YS. Comparison of quality characteristics of Platycodon grandiflorum according to steaming and fermentation. Korean J Food Preserv 2015; 22(6): 851-858. https://doi.org/10.11002/kjfp.2015.22.6.851
  19. Lee BJ, Jeon SH, Lee SW, Chun HS, Cho YS. Effect of drying methods on the saponin and mineral contents of Platycodon grandiflorum radix. Korean J Food Sci Technol 2014; 46(5): 636-640. https://doi.org/10.9721/KJFST.2014.46.5.636
  20. Lee IS, Choi MC, Moon HY. Effect of Platycodon grandiflorum A. DC extract on the bronchus diseases bacteria. Korean J Biotechnol Bioeng 2000; 15(2): 162-166.
  21. Nyakudya E, Jeong JH, Lee NK, Jeong YS. Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev Nutr Food Sci 2014; 19(2): 59-68. https://doi.org/10.3746/pnf.2014.19.2.059
  22. Nam KY. The comparative understanding between red ginseng and white ginsengs, processed ginsengs (Panax ginseng C. A. Meyer). J Ginseng Res 2005; 29(1): 1-18. https://doi.org/10.5142/JGR.2005.29.1.001
  23. Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 2016; 1370(1): 82-96. https://doi.org/10.1111/nyas.13016
  24. O'Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000; 10(12): 542-550. https://doi.org/10.1016/S0962-8924(00)01856-0
  25. Lappin MB, Campbell JD. The Th1-Th2 classification of cellular immune responses: concepts, current thinking and applications in haematological malignancy. Blood Rev 2000; 14(4): 228-239. https://doi.org/10.1054/blre.2000.0136
  26. Mulder R, Banete A, Basta S. Spleen-derived macrophages are readily polarized into classically activated (M1) or alternatively activated (M2) states. Immunobiology 2014; 219(10): 737-745. https://doi.org/10.1016/j.imbio.2014.05.005
  27. Tugal D, Liao X, Jain MK. Transcriptional control of macrophage polarization. Arterioscler Thromb Vasc Biol 2013; 33(6): 1135-1144. https://doi.org/10.1161/ATVBAHA.113.301453
  28. Hawrylowicz CM, O'Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 2005; 5(4): 271-283. https://doi.org/10.1038/nri1589
  29. O'Garra A, Vieira PL, Vieira P, Goldfeld AE. IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 2004; 114(10): 1372-1378. https://doi.org/10.1172/JCI23215
  30. Chauhan SK, Saban DR, Lee HK, Dana R. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. J Immunol 2009; 182(1): 148-153. https://doi.org/10.4049/jimmunol.182.1.148
  31. Lin JY, Li CY, Hwang IF. Characterisation of the pigment components in red cabbage (Brassica oleracea L. var.) juice and their anti-inflammatory effects on LPS-stimulated murine splenocytes. Food Chem 2008; 109(4): 771-781. https://doi.org/10.1016/j.foodchem.2008.01.039

Cited by

  1. Immune-Enhancing Effects of Red Platycodon grandiflorus Root Extract via p38 MAPK-Mediated NF-κB Activation vol.10, pp.16, 2019, https://doi.org/10.3390/app10165457