DOI QR코드

DOI QR Code

Combustion Characteristics of Cow Manure Pellet as a Solid Fuel Source

고체연료원으로서의 우분 펠릿 연소특성

  • Jeong, Kwang-Hwa (Animal environment Division, National Institute of Animal Science) ;
  • Lee, Dong-jun (Animal environment Division, National Institute of Animal Science) ;
  • Lee, Dong-Hyun (Animal environment Division, National Institute of Animal Science) ;
  • Lee, Sung-Hyoun (Animal environment Division, National Institute of Animal Science)
  • 정광화 (국립축산과학원 축산환경과) ;
  • 이동준 (국립축산과학원 축산환경과) ;
  • 이동현 (국립축산과학원 축산환경과) ;
  • 이성현 (국립축산과학원 축산환경과)
  • Received : 2019.06.08
  • Accepted : 2019.06.19
  • Published : 2019.06.30

Abstract

In Korea, 51,013 thousand tons of livestock manure was generated in 2018. A total of 46,530 thousand tons, which is 91.2% of the total amount of livestock manure generated, was treated by composting(40,647 thousand tons) or liquid fertilization(5,884 thousand tons) method. At present, the policy of livestock manure treatment in Korea is to make livestock manure into organic fertilizer(compost, liquid fertilizer) and then to applicate it on agricultural land. And this policy is very effective in terms of livestock manure treatment and nutrient recycling. However, considering the steadily declining farmland area for decades, the use of livestock manure compost could be limited in the future. There is also concern that local nutrient overloading, nutrient management regulation, and restrictions on the number of livestock may become serious problem for livestock manure treatment. In addition, there are some opinions that nutrient derived from livestock manure may flow into tributaries of major dams. In recent years, there has been a suspicion that fine dust may be generated from livestock manure compost. In recent years, the use of livestock manure fertilizer has been rapidly increasing, there is a growing demand of the development of new technologies for livestock manure treatment. Especially, cow excretes a larger amount of manure than other livestock, so that the efficiency of development of new technology for cow manure treatment will be high. Therefore, in this study, the combustion characteristics of cow manure pellet were investigated in order to analyzed whether cow manure could be used as source of solid fuel. During the combustion test, the weight loss of the cow manure pellet began to increase when the temperature of the combustion chamber reached $300^{\circ}C$. The ratio of $H_2$, $CH_4$, CO in the pyrolysis gas produced in the pyrolysis process of cow manure pellet were 6.65~11.62%, 0.58~1.54 and 11.47~14.07%, respectively.

가축분뇨는 2018년 말 기준으로 연간 총 51,013천 톤이 발생하였고 그 중의 91.2%인 46,530천 톤이 퇴비화(40,647천 톤)나 액비화(5,884천 톤) 방법에 의해 처리되었다. 현재 우리나라의 가축분뇨 처리 관련 정책방향은 가축분뇨를 퇴비화나 액비화 방법을 적용하여 비료자원화 한 후 농경지에 유기성 비료로서 환원한다는 것이고, 이 정책은 가축분뇨 처리와 영양물질 순환 측면에서 그 효과가 매우 크다고 할 수 있다. 그러나 지난 수십 년 동안 지속적으로 감소하는 농경지 면적과 환경관련 제도의 변천상황을 고려하면 향후에 가축분 퇴비의 시용에 대한 제한이 강화될 우려 있다. 지역적인 양분 과잉발생 현상, 양분관리제 그리고 지자체별 가축 사육두수 제한조항과 같은 환경관련 제도 등이 가축분뇨 처리 및 자원화에 난제요인으로 작용하게 될 우려가 있다. 이에 더해 가축분뇨로부터 유래된 영양물질이 주요 댐의 상류에 위치한 지류로 유입될 수도 있을 것이라는 일부의 견해도 존재한다. 특히 최근 들어서는 가축분뇨 퇴비에서 미세먼지가 발생된다는 문제까지 제기되기도 했다. 이렇듯 가축분뇨 퇴비화에 대한 일반의 관심이 높아지고 있어서 새로운 방식의 가축분뇨 처리기술 개발의 필요성이 높아진 상황이다. 특히 소는 타 축종에 비해 마리당 분뇨발생량이 많아 우분처리 관련 신기술 개발은 그 효과가 매우 클 것으로 판단된다. 따라서 본 연구에서는 우분을 고체연료원으로서 사용시의 효과를 분석하기 위하여 우분펠릿의 연소과정에서 나타나는 특성을 조사하였다. 연소실험 결과 연소실의 온도가 약 $300^{\circ}C$ 내외에 도달했을 때 우분펠릿의 무게감소가 급격하게 나타나기 시작하였다. 우분펠릿의 열분해 과정에서 생성된 열분해가스중의 수소와 메탄 그리고 일산화탄소 농도는 각각 6.65~11.62%, 0.58~1.54% 그리고 11.47~14.07% 수준이었다.

Keywords

DOGSBE_2019_v27n2_31_f0001.png 이미지

Fig. 2. Sphere type cow manure pellet manufactured in this study.

DOGSBE_2019_v27n2_31_f0002.png 이미지

Fig. 1. Schematic diagram of homogenizer.

DOGSBE_2019_v27n2_31_f0003.png 이미지

Fig. 3. Results of thermal gravimetric analysis of cow manure.

DOGSBE_2019_v27n2_31_f0004.png 이미지

Fig. 4. Generation of hydrogen, methane, carbon monoxide from cow manure by heating with high temperature.

DOGSBE_2019_v27n2_31_f0005.png 이미지

Fig. 5. Results of thermal gravimetric analysis of tar.

DOGSBE_2019_v27n2_31_f0006.png 이미지

Fig. 6. Microscopic photograph of burnt residue.

DOGSBE_2019_v27n2_31_f0007.png 이미지

Fig. 7. Results of thermal gravimetric analysis of cow manure pellet.

Table 1. Experimental Conditions for Thermal Analysis Experiment

DOGSBE_2019_v27n2_31_t0001.png 이미지

Table 2. Characteristics of Cow Manure Pellet

DOGSBE_2019_v27n2_31_t0002.png 이미지

Table 3. Chemical Composition of Cow Manure Pellet

DOGSBE_2019_v27n2_31_t0003.png 이미지

Table 4. Concentration of Heavy Metals in Cow Manure Pellet

DOGSBE_2019_v27n2_31_t0004.png 이미지

Table 5. Elemental (C, H, N, S) Composition Ratio of Tar

DOGSBE_2019_v27n2_31_t0005.png 이미지

Table 6. Non-condensable Gases Generated by Each Experimental Stage

DOGSBE_2019_v27n2_31_t0006.png 이미지

References

  1. Korean Ministry of Agriculture, Food and Rural Affair, "Yield of Livestock Manure in South Korea". (2018).
  2. Jeong-Eun Lee., Dong-Hyuk Seo., Seok-In Yun., "Salt Removal in a Reclaimed Tidal Land Soil with Gypsum, Compost and Phosphate Amendment", Korean Society Of Soil Sciences And Fertilizer, 48(50), pp. 326-331. (2015). https://doi.org/10.7745/KJSSF.2015.48.5.326
  3. Sa, T.M., Chung, J.B., Han, G.H., "Effect of Livestock Manure on Yield of Plant and Change in Physio-chemical Properties of Soil", Korean Society Of Soil Sciences And Fertilizer, pp. 63-75. (2008).
  4. Statistics Korea, "Statistical Information Service". (2019).
  5. Il-Hyun Chung., Dae-Gi Kim., Jang-Ho Chae., "The Study on Possibility of RDF by Analysis of Physicochemical Characteristics of MSW by the Size Distribution", J. of Korea Society of Waste Management, 26(7), pp. 626-634. (2009).
  6. Sang-Woo Park., Cheol-Hyeon Jang., "A Product Assessment and Case Study with Solid Fuel of Sewage Sludge". J. of Korea Society of Waste Management, 25(6), pp. 493-498. (2008).
  7. Jae-Hyuk Hyun., Byeong-Du Jung., Min-Gil Kim., "Environmental Characteristics of the Solidified Sewage Sludge", J. of Korea Society of Waste Management, 25(7), PP. 605-612. (2008).
  8. Sung-Hyoun Lee., Byeong-Kkee Yu1., Sun-Yi Ju., Yeon-Ku Kang., Gwang-Wha Jung, "Characteristics of Solid Fuel from Cattle Manure", New & Renewable Energy., 12(4). (2016).
  9. Jin, H.E., Yoon, Y.M., Hong, J.H, Byeong, B.S., Na, P.S., Ahn, Y.M., Kim, S.H., Oh, S.Y and Hong, J.M., "Study on Setting Quality and Grade standards of Livestock Manure Solidified Fuel", Keco. (2013).
  10. Ministry of Environment., "Notification on Construction of Facility for Livestock Manure Solidified Fuel", Notification No. 2015-110 of the Ministry of Environment. (2015).
  11. Kwang-Hwa Jeong., Jung-Kon Kim., Dong-Jun Lee., " Feasibility test for Solidified Fuel with Cow Manure" J. Soli Groundwater Environ, 22(6), pp. 112-119. (2017).
  12. Ministry of Environment., "Act on the Management and Use of Livestock Manure, Enforcement regulations", Attached table 4.2. (2016).
  13. Ministry of Agriculture, Forestry and Livestock, "Act on the Fertilizer Regulation", Article 4. (2019).
  14. G. H. Lee., "Thermal and Physicochemical Characteristics of Solid Fuel Extruded with Cattle Feedlot Manure", J. of Biosystems Eng, 35(1), pp. 64-68. (2010). https://doi.org/10.5307/JBE.2010.35.1.064
  15. Jin-Whan Choi, Young-Ho Park, Sang-Min Choi., "Fluid-phase combustion of solid waste fuel" J. of Korea Society of Waste Management, 18(3), pp. 1-9. (2001).
  16. Sang-An Ha., "A Study on the Characteristics of Combustion and Manufacturing Process on Refusederived Fuel by Mixing Different Ratios with Organic and Combustible Wastes", Journal of the Korea Organic Resources Recycling Association, 17(1), pp. 27-38. (2009).
  17. Sung-Hoon Shim., Sang-Hyun Jeong., Ji-Soo Ha., "High Temperature Exhaust Gas Recirculation for Low NOx Emission in Solid Fuel MILD Combustion in Pilot-scale Combustion Furnace", J. of Korea Society of Waste Management, 30(1), pp. 21-27. (2013). https://doi.org/10.9786/kswm.2013.30.1.21