DOI QR코드

DOI QR Code

Research Trends and Prospects on the Measurement of Spray Development

분무발달 측정법에 대한 연구경향 및 전망

  • 방승환 (신한대학교 기계자동차융합공학과)
  • Received : 2019.05.18
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

This article gives an overview of spray measurement technique were reviewed and suggestions. Spray formation mechanism is the most intellectually challenging and practically important topics in fluid mechanics. Methods for analysis of existing spray development have been developed in various ways, but if there is no support for relatively sufficient equipment, there are limitations to analysis. The newly measured and analyzed method may exceed the threshold for preparation of analysis and, as the results of two-dimensional individual analysis are aggregated and analyzed in three dimensions by a combination of analysis methods, the method is considered a relatively accurate analysis method that analysis.

Keywords

OMHHBZ_2019_v24n2_89_f0001.png 이미지

Fig. 1 Diesel spray structure(12)

OMHHBZ_2019_v24n2_89_f0002.png 이미지

Fig. 2 PLI system schematic

OMHHBZ_2019_v24n2_89_f0003.png 이미지

Fig. 3 PIV system schematic

OMHHBZ_2019_v24n2_89_f0004.png 이미지

Fig. 5 PDI system schematic

OMHHBZ_2019_v24n2_89_f0005.png 이미지

Fig. 7 BOS focusing position and image blur(36)

OMHHBZ_2019_v24n2_89_f0006.png 이미지

Fig. 6 BOS imaging configuration(36)

OMHHBZ_2019_v24n2_89_f0007.png 이미지

Fig. 8 Background pattern recording (L) before and (C) shortly after a density variation (R) vector plot of the displacement correlation(43)

OMHHBZ_2019_v24n2_89_f0008.png 이미지

Fig. 9 Conceptual schematic of LF camera system(48)

OMHHBZ_2019_v24n2_89_f0009.png 이미지

Fig. 10 View of assembly for attaching the micro-lens array & Cross-section through assembled parts(48)

OMHHBZ_2019_v24n2_89_f0010.png 이미지

Fig. 11 Refocusing after a single exposure of the LF camera(48)

OMHHBZ_2019_v24n2_89_f0011.png 이미지

Fig. 4 PLIF system schematic

OMHHBZ_2019_v24n2_89_f0012.png 이미지

Fig. 12 BOS & LF system schematic

References

  1. W. Bosch, "The fuel rate indicator: a new measuring instrument for display of the characteristics of individual injection", 1966. No. 660749.
  2. Rolf D. Reitz and R. Diwakar, Structure of high-pressure fuel sprays, 1987.
  3. M. Hoff, R. E. Mickle and R. A. Froude, "A Rapid Acquisition Lidar System for Aerial Spray Diagnostics", Transactions of the ASAE, Vol. 32, No. 5, 1989, pp. 1523-1528. https://doi.org/10.13031/2013.31183
  4. Hiro Hiroyasu and Arai Masataka, "Structures of fuel sprays in diesel engines", SAE transactions, 1990, pp. 1050-1061.
  5. Todd D. Fansler, Donald, T. French and Michael C. Drake, "Fuel distributions in a firing direct-injection spark-ignition engine using laser-induced fluorescence imaging", SAE transactions, 1995, pp. 323-338.
  6. Dennis L. Siebers, Liquid-phase fuel penetration in diesel sprays, 1998.
  7. Brian S. Higgins, Charles J. Mueller and Dennis L. Siebers, "Measurements of Fuel Effects on Liquid-Phase Penetration in DI Sprays", SAE, 1999, pp. 1999-01-0519.
  8. Caroline L. Genzale, Lyle M. Pickett and Sanghoon Kook, "Liquid penetration of diesel and biodiesel sprays at latecycle post-injection conditions", SAE International Journal of Engines, Vol. 3, No. 1, 2010, pp. 479-495. https://doi.org/10.4271/2010-01-0610
  9. William Bachalo, "Spray Diagnosticsfor the twenty-first century", Vol. 10, No. 3-5, 2000, pp. 439-474. https://doi.org/10.1615/AtomizSpr.v10.i3-5.110
  10. R. Payri, F. j. Salvador, J. Gimeno and L. d. Zapata, "Diesel nozzle geometry influence on spray liquidphase fuel penetration in evaporative conditions", Fuel, Vol. 87, No. 7, 2008, pp. 1165-1176. https://doi.org/10.1016/j.fuel.2007.05.058
  11. Yujie Wang, Xin Liu, Kyoung-Su Im, Wah-Keat Lee, Jin Wang, Kamel Fezzaa, David Ls Hung and James R. Winkelman, "Ultrafast X-ray study of dense-liquidjet flow dynamics using structure-tracking velocimetry", Nature Physics, Vol. 4, No. 4, 2008, p. 305. https://doi.org/10.1038/nphys840
  12. Arai Masataka, "Diesel spray charaterristics and its combustion", 2005, pp. 68-82.
  13. Norman Chigier, William Bachalo, Rolf D. Bellan Reitz and Marcus Josette Herrmann, "Spray control for maximizing energy efficiency and reducing emission in combustion engines", Atomization and Sprays, Vol. 21, No. 7, 2011.
  14. Mark Linne, "Imaging in the optically dense regions of a spray: A review of developing techniques", Progress in Energy and Combustion Science, Vol. 39, No. 5, 2013, pp. 403-440. https://doi.org/10.1016/j.pecs.2013.06.001
  15. Gary S. Settles, "Historical Background", Springer, 2001, pp. 1-24.
  16. Klein-Douwel, Rjh Frijters, Pjm Somers, Lmt De Boer, and Wa Baert Rsg, "Macroscopic diesel fuel spray shadowgraphy using high speed digital imaging in a high pressure cell", Fuel, Vol. 86, No. 12-13, 2007, pp. 1994-2007. https://doi.org/10.1016/j.fuel.2006.11.039
  17. Pickett, L. M., Genzale, C. L., Manin, J., Malbec, L., and Hermant, L., "Measurement uncertainty of liquid penetration in evaporating diesel sprays", Proc. ILASS Americas, Vol. 23rd Annual Conf. on Liquid Atomization and Spray Systems, 2011.
  18. Christof Schulz and Volker Sick, "Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems", Progress in Energy and Combustion Science, Vol. 31, No. 1, 2005, pp. 75-121. https://doi.org/10.1016/j.pecs.2004.08.002
  19. Jian Gao, Deming Jiang and Zuohua Huang, "Spray properties of alternative fuels: A comparative analysis of ethanol-gasoline blends and gasoline", Fuel, Vol. 86, No. 10-11, 2007, pp. 1645-1650. https://doi.org/10.1016/j.fuel.2006.11.013
  20. Scott E. Parrish and R. J. Zink, "Development and Application of Imaging System to Evaluate Liquid and Vapor Envelopes of Multi-Hole Gasoline Fuel Injector Sprays under Engine-Like Conditions", Atomization and Sprays, Vol. 22, No. 8, 2012, pp. 647-661. https://doi.org/10.1615/AtomizSpr.2012006215
  21. Yu-Yin Zhang, Takuo Yoshizaki and Keiya Nishida, "Imaging of droplets and vapor distributions in a Diesel fuel spray by means of a laser absorption-scattering technique", Applied Optics, Vol. 39, No. 33, 2000, pp. 6221-6229. https://doi.org/10.1364/AO.39.006221
  22. Markus Raffel, Christian E. Willert, Fulvio Scarano, Christian J. Kahler, Steve T. Wereley, and Jurgen Kompenhans, "Particle image velocimetry: a practical guide", Springer, 2018.
  23. Ronald J. Adrian and Jerry Westerweel, "Particle image velocimetry", Cambridge University Press, 2011.
  24. R. Palero Virginia and Ikeda Yuji, "Droplet-size-classified stereoscopic PIV for spray characterization", Measurement Science and Technology, Vol. 13, No. 7, 2002, p. 1050. https://doi.org/10.1088/0957-0233/13/7/312
  25. Angarita-Jaimes, Diego Towers, Catherine Elizabeth Towers and David Peter, "Three-component multi-phase velocimetry measurements on a GDI spray using optically efficient fluorescent tracers", Experiments in Fluids, Vol. 52, No. 4, 2012, pp. 949-962. https://doi.org/10.1007/s00348-011-1174-3
  26. V. G. Mcdonell and G. S. Samuelsen, "Measurement of fuel mixing and transport processes in gas turbine combustion", Measurement Science and Technology, Vol. 11, No. 7, 2000, p. 870. https://doi.org/10.1088/0957-0233/11/7/304
  27. Cameron Tropea, "Optical Particle Characterization in Flows", Annual Review of Fluid Mechanics, Vol. 43, No. 1, 2011, pp. 399-426. https://doi.org/10.1146/annurev-fluid-122109-160721
  28. Rainer Hain, Christian J. Kahler and Cam Tropea, "Comparison of CCD, CMOS and intensified cameras", Experiments in Fluids, Vol. 42, No. 3, 2007, pp. 403-411. https://doi.org/10.1007/s00348-006-0247-1
  29. V. Weber, J. Brubach, R. L. Gordon and A. Dreizler, "Pixel-based characterisation of CMOS high-speed camera systems", Applied Physics B, Vol. 103, No. 2, 2011, pp. 421-433. https://doi.org/10.1007/s00340-011-4443-1
  30. P. Buchave, M. Saffmann and H. Tanger, "Simultaneous measurement of size, concentration and velocity of spherical particles by a laser Doppler method", 1984.
  31. W. D. Bachalo, "Method for measuring the size and velocity of spheres by dual-beam light-scatter interferometry", Appl. Opt., Vol. 19, 1980, pp. 363-70. https://doi.org/10.1364/AO.19.000363
  32. H.-E., Albrecht, N. Damaschke, M. Borys and C. Tropea, "Laser Doppler and Phase Doppler Measurement Techniques", Springer, 2002.
  33. Hugues Richard and Markus Raffel, "Principle and applications of the background oriented schlieren (BOS) method", Measurement Science and Technology, Vol. 12, No. 9, 2001, p. 1576. https://doi.org/10.1088/0957-0233/12/9/325
  34. Gea Meier, "Computerized background-oriented schlieren", Experiments in Fluids, Vol. 33, No. 1, 2002, pp. 181-187. https://doi.org/10.1007/s00348-002-0450-7
  35. Sb Hughes Dalziel, Graham O Sutherland, Bruce R, "Whole-field density measurements by 'synthetic schlieren'", Experiments in Fluids, Vol. 28, No. 4, 2000, pp. 322-335. https://doi.org/10.1007/s003480050391
  36. Markus Raffel, "Background-oriented schlieren (BOS) techniques", Experiments in Fluids, Vol. 56, No. 3, 2015, p. 60. https://doi.org/10.1007/s00348-015-1927-5
  37. L. Venkatakrishnan and Gea Meier, "Density measurements using the background oriented schlieren technique", Experiments in Fluids, Vol. 37, No. 2, 2004, pp. 237-247. https://doi.org/10.1007/s00348-004-0807-1
  38. M. Raffel, C. Tung, H. Richard, Y. Yu and Gea Meier, "Background oriented stereoscopic schlieren (BOS) for full scale helicopter vortex characterization", 2000, pp. 23-24.
  39. Bradley Atcheson, Wolfgang Heidrich and Ivo Ihrke, "An evaluation of optical flow algorithms for background oriented schlieren imaging", Experiments in Fluids, Vol. 46, No. 3, 2009, pp. 467-476. https://doi.org/10.1007/s00348-008-0572-7
  40. Ryonosuke, W., Ozawa, Tristian J. Cox and Kareem Ahmed, "Three-dimensional Measurements of Supersonic Flow Using Tomographic Background Oriented Schlieren", American Institute of Aeronautics and Astronautics, 2018.
  41. Markus Weilenmann, Yuan Xiong, Mirko Bothien and Nicolas Noiray, "Background Oriented Schlieren of Fuel Jet Flapping Under Thermoacoustic Oscillations in a Sequential Combustor", 51050, 2018, pp. V04AT04A034.
  42. J. F. Gladstone and T. P. Dale, "Researches on the refraction, dispersion, and sensitiveness of liquids", Philos. Trans. R. Soc. Lond, Vol. 153, 1863.
  43. Markus Raffel, Hernandez-Rivera, Ricardo Heine, Benjamin Schroder, and Andreas Mulleners Karen, "Density tagging velocimetry", Experiments in Fluids, Vol. 51, No. 2, 2011, pp. 573-578. https://doi.org/10.1007/s00348-011-1058-6
  44. A. Gershun, ""The Light Field", Moscow, 1936, trans. by P.Moon and G. Timoshenko, J.", Math. and Physics, Vol. 18, 1939, pp. 51-151. https://doi.org/10.1002/sapm193918151
  45. Edward H. Adelson and James R. Bergen, "The Plenoptic Function and the Elements of Early Vision", Computational Models of Visual Processing, 1991, pp. 3-20.
  46. Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam Barth, Andrew Adams, Mark Horowitz, and Marc Levoy, "High performance imaging using large camera arrays", ACM, 2005, pp. 765-776.
  47. J. Y. A. Wang and E. H. Adelson, "Single Lens Stereo with a Plenoptic Camera", IEEE Transactions on Pattern Analysis & Machine Intelligence, Vol. 14, 1992, pp. 99-106. https://doi.org/10.1109/34.121783
  48. Ren Ng, Marc Levoy, Mathieu Bredif, Gene Duval, Mark Horowitz, and Pat Hanrahan, "Light field photography with a hand-held plenoptic camera", Computer Science Technical Report CSTR, Vol. 2, No. 11, 2005, pp. 1-11.
  49. A. Lumsdaine and T. Georgiev, "The focused plenoptic camera", 2009 IEEE International Conference on Computational Photography (ICCP), 2009, pp. 1-8.
  50. Todor Georgiev and Andrew Lumsdaine, "The multifocus plenoptic camera". IS&T/SPIE Electronic Imaging, Vol. 8299, SPIE, 2012.
  51. Christian PerwaB and Lennart Wietzke, "Single lens 3D-camera with extended depth-of-field", IS&T/SPIE Electronic Imaging, Vol. 8291: SPIE, 2012.