References
- Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A. L., Sadoul, R. and Verna, J. M. (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog. Neurobiol. 65, 135-172. https://doi.org/10.1016/S0301-0082(01)00003-X
- Chen, G., Bower, K. A., Ma, C., Fang, S., Thiele, C. J. and Luo, J. (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J. 18, 1162-1164. https://doi.org/10.1096/fj.04-1551fje
- Chen, J. H., Ou, H. P., Lin, C. Y., Lin, F. J., Wu, C. R., Chang, S. W. and Tsai, C. W. (2012) Carnosic acid prevents 6-hydroxydopamineinduced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem. Res. Toxicol. 25, 1893-1901. https://doi.org/10.1021/tx300171u
- Dzamko, N., Zhou, J., Huang, Y. and Halliday, G. M. (2014) Parkinson's disease-implicated kinases in the brain; insights into disease pathogenesis. Front. Mol. Neurosci. 7, 57.
- Eren-Guzelgun, B., Ince, E. and Gurer-Orhan, H. (2018) In vitro antioxidant/prooxidant effects of combined use of flavonoids. Nat. Prod. Res. 32, 1446-1450. https://doi.org/10.1080/14786419.2017.1346637
- Eriksen, J. L., Dawson, T. M., Dickson, D. W. and Petrucelli, L. (2003) Caught in the act: alpha-synuclein is the culprit in Parkinson's disease. Neuron 40, 453-456. https://doi.org/10.1016/S0896-6273(03)00684-6
- Franco, J. L., Posser, T., Gordon, S. L., Bobrovskaya, L., Schneider, J. J., Farina, M., Dafre, A. L., Dickson, P. W. and Dunkley, P. R. (2010) Expression of tyrosine hydroxylase increases the resistance of human neuroblastoma cells to oxidative insults. Toxicol. Sci. 113, 150-157. https://doi.org/10.1093/toxsci/kfp245
- Grütter, M. G. (2000) Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10, 649-655. https://doi.org/10.1016/S0959-440X(00)00146-9
- Guo, S., Bezard, E. and Zhao, B. (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic. Biol. Med. 39, 682-695. https://doi.org/10.1016/j.freeradbiomed.2005.04.022
- Heinonen, S. M., Hoikkala, A., Wahala, K. and Adlercreutz, H. (2003) Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J. Steroid Biochem. Mol. Biol. 87, 285-299. https://doi.org/10.1016/j.jsbmb.2003.09.003
- Jin, X., Liu, Q., Jia, L., Li, M. and Wang, X. (2015) Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell. Mol. Neurobiol. 35, 323-333. https://doi.org/10.1007/s10571-014-0128-8
- Jing, X., Shi, H., Zhang, C., Ren, M., Han, M., Wei, X., Zhang, X. and Lou, H. (2015) Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity. Neuroscience 286, 131-140. https://doi.org/10.1016/j.neuroscience.2014.11.047
- Keum, Y. S. (2012) Regulation of Nrf2-mediated phase II detoxification and anti-oxidant genes. Biomol. Ther. (Seoul) 20, 144-151. https://doi.org/10.4062/biomolther.2012.20.2.144
- Kim, E., Kang, Y. G., Kim, J. H., Kim, Y. J., Lee, T. R., Lee, J., Kim, D. and Cho, J. Y. (2018) The antioxidant and anti-inflammatory activities of 8-hydroxydaidzein (8-HD) in activated macrophage-like RAW264.7 cells. Int. J. Mol. Sci. 19, E1828. https://doi.org/10.3390/ijms19071828
- Kim, E. K. and Choi, E. J. (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 1802, 396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
- Kim, H., Kim, J. R., Kang, H., Choi, J., Yang, H., Lee, P., Kim, J. and Lee, K. W. (2014) 7,8,4'-Trihydroxyisoflavone attenuates DNCBinduced atopic dermatitis-like symptoms in NC/Nga mice. PLoS ONE 9, e104938. https://doi.org/10.1371/journal.pone.0104938
- Kim, S. M., Park, Y. J., Shin, M. S., Kim, H. R., Kim, M. J., Lee, S. H., Yun, S. P. and Kwon, S. H. (2017) Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson's disease model. Bioorg. Med. Chem. Lett. 27, 5207-5212. https://doi.org/10.1016/j.bmcl.2017.10.048
- Kirik, D., Rosenblad, C., Burger, C., Lundberg, C., Johansen, T.E., Muzyczka, N., Mandel, R.J. and Björklund, A. (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alphasynuclein in the nigrostriatal system. J. Neurosci. 22, 2780-2791. https://doi.org/10.1523/JNEUROSCI.22-07-02780.2002
- Ko, Y. H., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2018a) 6,7,4'-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur. J. Pharmacol. 826, 140-147. https://doi.org/10.1016/j.ejphar.2018.02.048
- Ko, Y. H., Kwon, S. H., Hwang, J. Y., Kim, K. I., Seo, J. Y., Nguyen, T. L., Lee, S. Y., Kim, H. C. and Jang, C. G. (2018b) The memoryenhancing effects of liquiritigenin by activation of NMDA receptors and the CREB signaling pathway in mice. Biomol. Ther. (Seoul) 26, 109-114. https://doi.org/10.4062/biomolther.2016.284
- Kopalli, S. R., Noh, S. J., Koppula, S. and Suh, Y. H. (2013) Methylparaben protects 6-hydroxydopamine-induced neurotoxicity in SHSY5Y cells and improved behavioral impairments in mouse model of Parkinson's disease. Neurotoxicology 34, 25-32. https://doi.org/10.1016/j.neuro.2012.10.003
-
Kwon, S. H., Hong, S. I., Jung, Y. H., Kim, M. J., Kim, S. Y., Kim, H. C., Lee, S. Y. and Jang, C. G. (2012) Lonicera japonica THUNB. protects 6-hydroxydopamine-induced neurotoxicity by inhibiting activation of MAPKs, PI3K/Akt, and NF-
${\kappa}$ B in SH-SY5Y cells. Food Chem. Toxicol. 50, 797-807. https://doi.org/10.1016/j.fct.2011.12.026 - Kwon, S. H., Kim, J. A., Hong, S. I., Jung, Y. H., Kim, H. C., Lee, S. Y. and Jang, C. G. (2011) Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem. Int. 58, 533-541. https://doi.org/10.1016/j.neuint.2011.01.012
- Kwon, S. H., Ma, S. X., Hong, S. I., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2014) Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells. J. Ethnopharmacol. 152, 173-182. https://doi.org/10.1016/j.jep.2013.12.048
- Kwon, S. H., Ma, S. H., Hwang, J. Y., Lee, S. Y. and Jang, C. G. (2015) Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta25-35 neurotoxicity. Neuroscience 304, 14-28. https://doi.org/10.1016/j.neuroscience.2015.07.030
- Lee, C. C., Dudonne, S., Kim, J. H., Kim, J. S., Dube, P., Kim, J. E., Desjardins, Y., Park, J. H. Y., Lee, K. W. and Lee, C. Y. (2018) A major daidzin metabolite 7,8,4'-trihydroxyisoflavone found in the plasma of soybean extract-fed rats attenuates monocyte-endothelial cell adhesion. Food Chem. 240, 607-614. https://doi.org/10.1016/j.foodchem.2017.08.002
- Lee, H. J., Noh, Y. H., Lee, D. Y., Kim, Y. S., Kim, K. Y., Chung, Y. H., Lee, W. B. and Kim, S. S. (2005) Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur. J. Cell Biol. 84, 897-905. https://doi.org/10.1016/j.ejcb.2005.07.003
- Lee, I. H. and Chou, C. C. (2006) Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi. J. Agric. Food Chem. 54, 1309-1314. https://doi.org/10.1021/jf058139m
- Lewis, T. S., Shapiro, P. S. and Ahn, N. G. (1998) Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49-139. https://doi.org/10.1016/S0065-230X(08)60765-4
-
Li, H. Y., Pan, L., Ke, Y. S., Batnasan, E., Jin, X. Q., Liu, Z. Y. and Ba, X. Q. (2014) Daidzein suppresses pro-inflammatory chemokine Cxcl2 transcription in TNF-
${\alpha}$ -stimulated murine lung epithelial cells via depressing PARP-1 activity. Acta Pharmacol. Sin. 35, 496-503. https://doi.org/10.1038/aps.2013.191 - Park, H. J., Lee, K. S., Zhao, T. T., Lee, K. E. and Lee, M. K. (2017) Effects of asarinin on dopamine biosynthesis and 6-hydroxydopamine-induced cytotoxicity in PC12 cells. Arch. Pharm. Res. 40, 631-639. https://doi.org/10.1007/s12272-017-0908-z
- Pislar, A. H., Zidar, N., Kikelj, D. and Kos, J. (2014) Cathepsin X promotes 6-hydroxydopamine-induced apoptosis of PC12 and SHSY5Y cells. Neuropharmacology 82, 121-131. https://doi.org/10.1016/j.neuropharm.2013.07.040
- Porres-Martinez, M., Gonzalez-Burgos, E., Carretero, M. E. and Gomez-Serranillos, M. P. (2015) Protective properties of Salvia lavandulifolia Vahl. essential oil against oxidative stress-induced neuronal injury. Food Chem. Toxicol. 80, 154-162. https://doi.org/10.1016/j.fct.2015.03.002
- Rimbach, G., De Pascual-Teresa, S., Ewins, B. A., Matsugo, S., Uchida, Y., Minihane, A. M., Turner, R., VafeiAdou, K. and Weinberg, P. D. (2003) Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica 33, 913-925. https://doi.org/10.1080/0049825031000150444
- Rodriguez-Oroz, M. C., Jahanshahi, M., Krack, P., Litvan, I., Macias, R., Bezard, E. and Obeso, J. A. (2009) Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol. 8, 1128-1139. https://doi.org/10.1016/S1474-4422(09)70293-5
- Shukla, A., Mohapatra, T. M., Parmar, D. and Seth, K. (2014) Neuroprotective potentials of neurotrophin rich olfactory ensheathing cell's conditioned media against 6OHDA-induced oxidative damage. Free Radic. Res. 48, 560-571. https://doi.org/10.3109/10715762.2014.894636
- Simola, N., Morelli, M. and Carta, A. R. (2007) The 6-hydroxydopamine model of Parkinson's disease. Neurotox. Res. 11, 151-167. https://doi.org/10.1007/BF03033565
-
Tan, J. W. and Kim, M. K. (2016) neuroprotective effects of biochanin A against
${\beta}$ -amyloid-induced neurotoxicity in PC12 cells via a mitochondrial-dependent apoptosis pathway. Molecules 21, 548. https://doi.org/10.3390/molecules21050548 - Tian, L. L., Zhou, Z., Zhang, Q., Sun, Y. N., Li, C. R., Cheng, C. H., Zhong, Z. Y. and Wang, S. Q. (2007) Protective effect of (+/-) isoborneol against 6-OHDA-induced apoptosis in SH-SY5Y cells. Cell. Physiol. Biochem. 20, 1019-1032. https://doi.org/10.1159/000110682
- Tortosa, A., Lopez, E. and Ferrer, I. (1997) Bcl-2 and Bax proteins in Lewy bodies from patients with Parkinson's disease and Diffuse Lewy body disease. Neurosci. Lett. 238, 78-80. https://doi.org/10.1016/S0304-3940(97)00837-9
- Vander Heiden, M. G. and Thompson, C. B. (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol. 1, E209-E216. https://doi.org/10.1038/70237
-
Wu, P. S., Ding, H. Y., Yen, J. H., Chen, S. F., Lee, K. H. and Wu, M. J. (2018) Anti-inflammatory activity of 8-hydroxydaidzein in LPSstimulated BV2 microglial cells via activation of Nrf2-antioxidant and attenuation of Akt/NF-
${\kappa}$ B-inflammatory signaling pathways, as well as inhibition of COX-2 activity. J. Agric. Food Chem. 66, 5790-5801. https://doi.org/10.1021/acs.jafc.8b00437 - Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
- Xiao, X., Liu, J., Hu, J., Zhu, X., Yang, H., Wang, C. and Zhang, Y. (2008) Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms. Eur. J. Pharmacol. 591, 21-27. https://doi.org/10.1016/j.ejphar.2008.06.045
-
Xie, C. L., Lin, J. Y., Wang, M. H., Zhang, Y., Zhang, S. F., Wang, X. J. and Liu, Z. G. (2016) Inhibition of glycogen synthase kinase-3
${\beta}$ (GSK-3${\beta}$ ) as potent therapeutic strategy to ameliorates L-dopa-induced dyskinesia in 6-OHDA parkinsonian rats. Sci. Rep. 6, 23527. https://doi.org/10.1038/srep23527 - Xu, B. and Chang, S. K. (2008) Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J. Agric. Food Chem. 56, 8365-8373. https://doi.org/10.1021/jf801196d
- Yu, G., Deng, A., Tang, W., Ma, J., Yuan, C. and Ma, J. (2016) Hydroxytyrosol induces phase II detoxifying enzyme expression and effectively protects dopaminergic cells against dopamine- and 6-hydroxydopamine induced cytotoxicity. Neurochem. Int. 96, 113-120. https://doi.org/10.1016/j.neuint.2016.03.005
- Yu, S., Zuo, X., Li, Y., Zhang, C., Zhou, M., Zhang, Y. A., Ueda, K. and Chan, P. (2004) Inhibition of tyrosine hydroxylase expression in alpha-synuclein-transfected dopaminergic neuronal cells. Neurosci. Lett. 367, 34-39. https://doi.org/10.1016/j.neulet.2004.05.118
- Yuan, H., Zheng, J. C., Liu, P., Zhang, S. F., Xu, J. Y. and Bai, L. M. (2007) Pathogenesis of Parkinson's disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci. Bull. 23, 125-130. https://doi.org/10.1007/s12264-007-0018-x
- Zhang, L. J., Xue, Y. Q., Yang, C., Yang, W. H., Chen, L., Zhang, Q. J., Qu, T. Y., Huang, S., Zhao, L. R., Wang, X. M. and Duan, W. M. (2012) Human albumin prevents 6-hydroxydopamine-induced loss of tyrosine hydroxylase in in vitro and in vivo. PLoS ONE 7, e41226. https://doi.org/10.1371/journal.pone.0041226
Cited by
- Antineuroinflammatory Effects of 7,3',4'-Trihydroxyisoflavone in Lipopolysaccharide-Stimulated BV2 Microglial Cells through MAPK and NF-κB Signaling Suppression vol.29, pp.2, 2019, https://doi.org/10.4062/biomolther.2020.093
- Neuroprotection with the Cannabidiol Quinone Derivative VCE-004.8 (EHP-101) against 6-Hydroxydopamine in Cell and Murine Models of Parkinson’s Disease vol.26, pp.11, 2021, https://doi.org/10.3390/molecules26113245
- Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling vol.29, pp.6, 2021, https://doi.org/10.4062/biomolther.2021.143
- Neuroprotective effect of bromelain in 6-hydroxydopamine induced in vitro model of Parkinson’s disease vol.48, pp.12, 2021, https://doi.org/10.1007/s11033-021-06779-y
- Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase vol.7, pp.4, 2019, https://doi.org/10.3390/fermentation7040232