DOI QR코드

DOI QR Code

7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

  • Ko, Yong-Hyun (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Seon-Kyung (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Kwon, Seung-Hwan (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Seo, Jee-Yeon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Bo-Ram (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Young-Jung (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Hur, Kwang-Hyun (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Sun Yeou (College of Pharmacy, Gachon University) ;
  • Lee, Seok-Yong (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Jang, Choon-Gon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
  • Received : 2018.10.31
  • Accepted : 2019.02.18
  • Published : 2019.07.01

Abstract

Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta ($GSK-3{\beta}$) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/$GSK-3{\beta}$ pathways.

Keywords

References

  1. Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A. L., Sadoul, R. and Verna, J. M. (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog. Neurobiol. 65, 135-172. https://doi.org/10.1016/S0301-0082(01)00003-X
  2. Chen, G., Bower, K. A., Ma, C., Fang, S., Thiele, C. J. and Luo, J. (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J. 18, 1162-1164. https://doi.org/10.1096/fj.04-1551fje
  3. Chen, J. H., Ou, H. P., Lin, C. Y., Lin, F. J., Wu, C. R., Chang, S. W. and Tsai, C. W. (2012) Carnosic acid prevents 6-hydroxydopamineinduced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem. Res. Toxicol. 25, 1893-1901. https://doi.org/10.1021/tx300171u
  4. Dzamko, N., Zhou, J., Huang, Y. and Halliday, G. M. (2014) Parkinson's disease-implicated kinases in the brain; insights into disease pathogenesis. Front. Mol. Neurosci. 7, 57.
  5. Eren-Guzelgun, B., Ince, E. and Gurer-Orhan, H. (2018) In vitro antioxidant/prooxidant effects of combined use of flavonoids. Nat. Prod. Res. 32, 1446-1450. https://doi.org/10.1080/14786419.2017.1346637
  6. Eriksen, J. L., Dawson, T. M., Dickson, D. W. and Petrucelli, L. (2003) Caught in the act: alpha-synuclein is the culprit in Parkinson's disease. Neuron 40, 453-456. https://doi.org/10.1016/S0896-6273(03)00684-6
  7. Franco, J. L., Posser, T., Gordon, S. L., Bobrovskaya, L., Schneider, J. J., Farina, M., Dafre, A. L., Dickson, P. W. and Dunkley, P. R. (2010) Expression of tyrosine hydroxylase increases the resistance of human neuroblastoma cells to oxidative insults. Toxicol. Sci. 113, 150-157. https://doi.org/10.1093/toxsci/kfp245
  8. Grütter, M. G. (2000) Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10, 649-655. https://doi.org/10.1016/S0959-440X(00)00146-9
  9. Guo, S., Bezard, E. and Zhao, B. (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic. Biol. Med. 39, 682-695. https://doi.org/10.1016/j.freeradbiomed.2005.04.022
  10. Heinonen, S. M., Hoikkala, A., Wahala, K. and Adlercreutz, H. (2003) Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J. Steroid Biochem. Mol. Biol. 87, 285-299. https://doi.org/10.1016/j.jsbmb.2003.09.003
  11. Jin, X., Liu, Q., Jia, L., Li, M. and Wang, X. (2015) Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell. Mol. Neurobiol. 35, 323-333. https://doi.org/10.1007/s10571-014-0128-8
  12. Jing, X., Shi, H., Zhang, C., Ren, M., Han, M., Wei, X., Zhang, X. and Lou, H. (2015) Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity. Neuroscience 286, 131-140. https://doi.org/10.1016/j.neuroscience.2014.11.047
  13. Keum, Y. S. (2012) Regulation of Nrf2-mediated phase II detoxification and anti-oxidant genes. Biomol. Ther. (Seoul) 20, 144-151. https://doi.org/10.4062/biomolther.2012.20.2.144
  14. Kim, E., Kang, Y. G., Kim, J. H., Kim, Y. J., Lee, T. R., Lee, J., Kim, D. and Cho, J. Y. (2018) The antioxidant and anti-inflammatory activities of 8-hydroxydaidzein (8-HD) in activated macrophage-like RAW264.7 cells. Int. J. Mol. Sci. 19, E1828. https://doi.org/10.3390/ijms19071828
  15. Kim, E. K. and Choi, E. J. (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 1802, 396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
  16. Kim, H., Kim, J. R., Kang, H., Choi, J., Yang, H., Lee, P., Kim, J. and Lee, K. W. (2014) 7,8,4'-Trihydroxyisoflavone attenuates DNCBinduced atopic dermatitis-like symptoms in NC/Nga mice. PLoS ONE 9, e104938. https://doi.org/10.1371/journal.pone.0104938
  17. Kim, S. M., Park, Y. J., Shin, M. S., Kim, H. R., Kim, M. J., Lee, S. H., Yun, S. P. and Kwon, S. H. (2017) Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson's disease model. Bioorg. Med. Chem. Lett. 27, 5207-5212. https://doi.org/10.1016/j.bmcl.2017.10.048
  18. Kirik, D., Rosenblad, C., Burger, C., Lundberg, C., Johansen, T.E., Muzyczka, N., Mandel, R.J. and Björklund, A. (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alphasynuclein in the nigrostriatal system. J. Neurosci. 22, 2780-2791. https://doi.org/10.1523/JNEUROSCI.22-07-02780.2002
  19. Ko, Y. H., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2018a) 6,7,4'-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur. J. Pharmacol. 826, 140-147. https://doi.org/10.1016/j.ejphar.2018.02.048
  20. Ko, Y. H., Kwon, S. H., Hwang, J. Y., Kim, K. I., Seo, J. Y., Nguyen, T. L., Lee, S. Y., Kim, H. C. and Jang, C. G. (2018b) The memoryenhancing effects of liquiritigenin by activation of NMDA receptors and the CREB signaling pathway in mice. Biomol. Ther. (Seoul) 26, 109-114. https://doi.org/10.4062/biomolther.2016.284
  21. Kopalli, S. R., Noh, S. J., Koppula, S. and Suh, Y. H. (2013) Methylparaben protects 6-hydroxydopamine-induced neurotoxicity in SHSY5Y cells and improved behavioral impairments in mouse model of Parkinson's disease. Neurotoxicology 34, 25-32. https://doi.org/10.1016/j.neuro.2012.10.003
  22. Kwon, S. H., Hong, S. I., Jung, Y. H., Kim, M. J., Kim, S. Y., Kim, H. C., Lee, S. Y. and Jang, C. G. (2012) Lonicera japonica THUNB. protects 6-hydroxydopamine-induced neurotoxicity by inhibiting activation of MAPKs, PI3K/Akt, and NF-${\kappa}$B in SH-SY5Y cells. Food Chem. Toxicol. 50, 797-807. https://doi.org/10.1016/j.fct.2011.12.026
  23. Kwon, S. H., Kim, J. A., Hong, S. I., Jung, Y. H., Kim, H. C., Lee, S. Y. and Jang, C. G. (2011) Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem. Int. 58, 533-541. https://doi.org/10.1016/j.neuint.2011.01.012
  24. Kwon, S. H., Ma, S. X., Hong, S. I., Kim, S. Y., Lee, S. Y. and Jang, C. G. (2014) Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells. J. Ethnopharmacol. 152, 173-182. https://doi.org/10.1016/j.jep.2013.12.048
  25. Kwon, S. H., Ma, S. H., Hwang, J. Y., Lee, S. Y. and Jang, C. G. (2015) Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta25-35 neurotoxicity. Neuroscience 304, 14-28. https://doi.org/10.1016/j.neuroscience.2015.07.030
  26. Lee, C. C., Dudonne, S., Kim, J. H., Kim, J. S., Dube, P., Kim, J. E., Desjardins, Y., Park, J. H. Y., Lee, K. W. and Lee, C. Y. (2018) A major daidzin metabolite 7,8,4'-trihydroxyisoflavone found in the plasma of soybean extract-fed rats attenuates monocyte-endothelial cell adhesion. Food Chem. 240, 607-614. https://doi.org/10.1016/j.foodchem.2017.08.002
  27. Lee, H. J., Noh, Y. H., Lee, D. Y., Kim, Y. S., Kim, K. Y., Chung, Y. H., Lee, W. B. and Kim, S. S. (2005) Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur. J. Cell Biol. 84, 897-905. https://doi.org/10.1016/j.ejcb.2005.07.003
  28. Lee, I. H. and Chou, C. C. (2006) Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi. J. Agric. Food Chem. 54, 1309-1314. https://doi.org/10.1021/jf058139m
  29. Lewis, T. S., Shapiro, P. S. and Ahn, N. G. (1998) Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49-139. https://doi.org/10.1016/S0065-230X(08)60765-4
  30. Li, H. Y., Pan, L., Ke, Y. S., Batnasan, E., Jin, X. Q., Liu, Z. Y. and Ba, X. Q. (2014) Daidzein suppresses pro-inflammatory chemokine Cxcl2 transcription in TNF-${\alpha}$-stimulated murine lung epithelial cells via depressing PARP-1 activity. Acta Pharmacol. Sin. 35, 496-503. https://doi.org/10.1038/aps.2013.191
  31. Park, H. J., Lee, K. S., Zhao, T. T., Lee, K. E. and Lee, M. K. (2017) Effects of asarinin on dopamine biosynthesis and 6-hydroxydopamine-induced cytotoxicity in PC12 cells. Arch. Pharm. Res. 40, 631-639. https://doi.org/10.1007/s12272-017-0908-z
  32. Pislar, A. H., Zidar, N., Kikelj, D. and Kos, J. (2014) Cathepsin X promotes 6-hydroxydopamine-induced apoptosis of PC12 and SHSY5Y cells. Neuropharmacology 82, 121-131. https://doi.org/10.1016/j.neuropharm.2013.07.040
  33. Porres-Martinez, M., Gonzalez-Burgos, E., Carretero, M. E. and Gomez-Serranillos, M. P. (2015) Protective properties of Salvia lavandulifolia Vahl. essential oil against oxidative stress-induced neuronal injury. Food Chem. Toxicol. 80, 154-162. https://doi.org/10.1016/j.fct.2015.03.002
  34. Rimbach, G., De Pascual-Teresa, S., Ewins, B. A., Matsugo, S., Uchida, Y., Minihane, A. M., Turner, R., VafeiAdou, K. and Weinberg, P. D. (2003) Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica 33, 913-925. https://doi.org/10.1080/0049825031000150444
  35. Rodriguez-Oroz, M. C., Jahanshahi, M., Krack, P., Litvan, I., Macias, R., Bezard, E. and Obeso, J. A. (2009) Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol. 8, 1128-1139. https://doi.org/10.1016/S1474-4422(09)70293-5
  36. Shukla, A., Mohapatra, T. M., Parmar, D. and Seth, K. (2014) Neuroprotective potentials of neurotrophin rich olfactory ensheathing cell's conditioned media against 6OHDA-induced oxidative damage. Free Radic. Res. 48, 560-571. https://doi.org/10.3109/10715762.2014.894636
  37. Simola, N., Morelli, M. and Carta, A. R. (2007) The 6-hydroxydopamine model of Parkinson's disease. Neurotox. Res. 11, 151-167. https://doi.org/10.1007/BF03033565
  38. Tan, J. W. and Kim, M. K. (2016) neuroprotective effects of biochanin A against ${\beta}$-amyloid-induced neurotoxicity in PC12 cells via a mitochondrial-dependent apoptosis pathway. Molecules 21, 548. https://doi.org/10.3390/molecules21050548
  39. Tian, L. L., Zhou, Z., Zhang, Q., Sun, Y. N., Li, C. R., Cheng, C. H., Zhong, Z. Y. and Wang, S. Q. (2007) Protective effect of (+/-) isoborneol against 6-OHDA-induced apoptosis in SH-SY5Y cells. Cell. Physiol. Biochem. 20, 1019-1032. https://doi.org/10.1159/000110682
  40. Tortosa, A., Lopez, E. and Ferrer, I. (1997) Bcl-2 and Bax proteins in Lewy bodies from patients with Parkinson's disease and Diffuse Lewy body disease. Neurosci. Lett. 238, 78-80. https://doi.org/10.1016/S0304-3940(97)00837-9
  41. Vander Heiden, M. G. and Thompson, C. B. (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol. 1, E209-E216. https://doi.org/10.1038/70237
  42. Wu, P. S., Ding, H. Y., Yen, J. H., Chen, S. F., Lee, K. H. and Wu, M. J. (2018) Anti-inflammatory activity of 8-hydroxydaidzein in LPSstimulated BV2 microglial cells via activation of Nrf2-antioxidant and attenuation of Akt/NF-${\kappa}$B-inflammatory signaling pathways, as well as inhibition of COX-2 activity. J. Agric. Food Chem. 66, 5790-5801. https://doi.org/10.1021/acs.jafc.8b00437
  43. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
  44. Xiao, X., Liu, J., Hu, J., Zhu, X., Yang, H., Wang, C. and Zhang, Y. (2008) Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms. Eur. J. Pharmacol. 591, 21-27. https://doi.org/10.1016/j.ejphar.2008.06.045
  45. Xie, C. L., Lin, J. Y., Wang, M. H., Zhang, Y., Zhang, S. F., Wang, X. J. and Liu, Z. G. (2016) Inhibition of glycogen synthase kinase-3${\beta}$ (GSK-3${\beta}$) as potent therapeutic strategy to ameliorates L-dopa-induced dyskinesia in 6-OHDA parkinsonian rats. Sci. Rep. 6, 23527. https://doi.org/10.1038/srep23527
  46. Xu, B. and Chang, S. K. (2008) Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J. Agric. Food Chem. 56, 8365-8373. https://doi.org/10.1021/jf801196d
  47. Yu, G., Deng, A., Tang, W., Ma, J., Yuan, C. and Ma, J. (2016) Hydroxytyrosol induces phase II detoxifying enzyme expression and effectively protects dopaminergic cells against dopamine- and 6-hydroxydopamine induced cytotoxicity. Neurochem. Int. 96, 113-120. https://doi.org/10.1016/j.neuint.2016.03.005
  48. Yu, S., Zuo, X., Li, Y., Zhang, C., Zhou, M., Zhang, Y. A., Ueda, K. and Chan, P. (2004) Inhibition of tyrosine hydroxylase expression in alpha-synuclein-transfected dopaminergic neuronal cells. Neurosci. Lett. 367, 34-39. https://doi.org/10.1016/j.neulet.2004.05.118
  49. Yuan, H., Zheng, J. C., Liu, P., Zhang, S. F., Xu, J. Y. and Bai, L. M. (2007) Pathogenesis of Parkinson's disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci. Bull. 23, 125-130. https://doi.org/10.1007/s12264-007-0018-x
  50. Zhang, L. J., Xue, Y. Q., Yang, C., Yang, W. H., Chen, L., Zhang, Q. J., Qu, T. Y., Huang, S., Zhao, L. R., Wang, X. M. and Duan, W. M. (2012) Human albumin prevents 6-hydroxydopamine-induced loss of tyrosine hydroxylase in in vitro and in vivo. PLoS ONE 7, e41226. https://doi.org/10.1371/journal.pone.0041226

Cited by

  1. Antineuroinflammatory Effects of 7,3',4'-Trihydroxyisoflavone in Lipopolysaccharide-Stimulated BV2 Microglial Cells through MAPK and NF-κB Signaling Suppression vol.29, pp.2, 2019, https://doi.org/10.4062/biomolther.2020.093
  2. Neuroprotection with the Cannabidiol Quinone Derivative VCE-004.8 (EHP-101) against 6-Hydroxydopamine in Cell and Murine Models of Parkinson’s Disease vol.26, pp.11, 2021, https://doi.org/10.3390/molecules26113245
  3. Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling vol.29, pp.6, 2021, https://doi.org/10.4062/biomolther.2021.143
  4. Neuroprotective effect of bromelain in 6-hydroxydopamine induced in vitro model of Parkinson’s disease vol.48, pp.12, 2021, https://doi.org/10.1007/s11033-021-06779-y
  5. Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase vol.7, pp.4, 2019, https://doi.org/10.3390/fermentation7040232