DOI QR코드

DOI QR Code

Interplay Between Primary Cilia and Autophagy and Its Controversial Roles in Cancer

  • Ko, Je Yeong (Department of Life Systems, Sookmyung Women's University) ;
  • Lee, Eun Ji (Department of Life Systems, Sookmyung Women's University) ;
  • Park, Jong Hoon (Department of Life Systems, Sookmyung Women's University)
  • Received : 2019.03.29
  • Accepted : 2019.04.05
  • Published : 2019.07.01

Abstract

Primary cilia and autophagy are two distinct nutrient-sensing machineries required for maintaining intracellular energy homeostasis, either via signal transduction or recycling of macromolecules from cargo breakdown, respectively. Potential correlations between primary cilia and autophagy have been recently suggested and their relationship may increase our understanding of the pathogenesis of human diseases, including ciliopathies and cancer. In this review, we cover the current issues concerning the bidirectional interaction between primary cilia and autophagy and discuss its role in cancer with cilia defect.

Keywords

References

  1. Agbu, S. O., Liang, Y., Liu, A. and Anderson, K. V. (2018) The small GTPase RSG1 controls a final step in primary cilia initiation. J. Cell Biol. 217, 413-427. https://doi.org/10.1083/jcb.201604048
  2. Alers, S., Loffler, A. S., Wesselborg, S. and Stork, B. (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32, 2-11. https://doi.org/10.1128/MCB.06159-11
  3. Avalos, Y., Pena-Oyarzun, D., Budini, M., Morselli, E. and Criollo, A. (2017) New roles of the primary cilium in autophagy. Biomed. Res. Int. 2017, 4367019.
  4. Basten, S. G. and Giles, R. H. (2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2, 6. https://doi.org/10.1186/2046-2530-2-6
  5. Basten, S. G., Willekers, S., Vermaat, J. S., Slaats, G. G., Voest, E. E., van Diest, P. J. and Giles, R. H. (2013) Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia 2, 2. https://doi.org/10.1186/2046-2530-2-2
  6. Battle, C., Ott, C. M., Burnette, D. T., Lippincott-Schwartz, J. and Schmidt, C. F. (2015) Intracellular and extracellular forces drive primary cilia movement. Proc. Natl. Acad. Sci. U.S.A. 112, 1410-1415. https://doi.org/10.1073/pnas.1421845112
  7. Cao, M. and Zhong, Q. (2015) Cilia in autophagy and cancer. Cilia 5, 4. https://doi.org/10.1186/s13630-016-0027-3
  8. Chaya, T., Omori, Y., Kuwahara, R. and Furukawa, T. (2014) ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J. 33, 1227-1242. https://doi.org/10.1002/embj.201488175
  9. Cloonan, S. M., Lam, H. C., Ryter, S. W. and Choi, A. M. (2014) "Ciliophagy": the consumption of cilia components by autophagy. Autophagy 10, 532-534. https://doi.org/10.4161/auto.27641
  10. Dasgupta, A. and Amack, J. D. (2016) Cilia in vertebrate left-right patterning. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 371, 20150410. https://doi.org/10.1098/rstb.2015.0410
  11. Delaine-Smith, R. M., Sittichokechaiwut, A. and Reilly, G. C. (2014) Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J. 28, 430-439. https://doi.org/10.1096/fj.13-231894
  12. Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
  13. Higgins, M., Obaidi, I. and McMorrow, T. (2019) Primary cilia and their role in cancer. Oncol. Lett. 17, 3041-3047. https://doi.org/10.3892/ol.2019.9942
  14. Hsiao, C. J., Chang, C. H., Ibrahim, R. B., Lin, I. H., Wang, C. H., Wang, W. J. and Tsai, J. W. (2018) Gli2 modulates cell cycle re-entry through autophagy-mediated regulation of the length of primary cilia. J. Cell Sci. 131, jcs221218. https://doi.org/10.1242/jcs.221218
  15. Jenks, A. D., Vyse, S., Wong, J. P., Kostaras, E., Keller, D., Burgoyne, T., Shoemark, A., Tsalikis, A., de la Roche, M., Michaelis, M., Cinatl, J., Jr., Huang, P. H. and Tanos, B. E. (2018) Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 23, 3042-3055. https://doi.org/10.1016/j.celrep.2018.05.016
  16. Jonassen, J. A., San Agustin, J., Follit, J. A. and Pazour, G. J. (2008) Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 183, 377-384. https://doi.org/10.1083/jcb.200808137
  17. Jonassen, J. A., SanAgustin, J., Baker, S. P. and Pazour, G. J. (2012) Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J. Am. Soc. Nephrol. 23, 641-651. https://doi.org/10.1681/ASN.2011080829
  18. Kasahara, K., Kawakami, Y., Kiyono, T., Yonemura, S., Kawamura, Y., Era, S., Matsuzaki, F., Goshima, N. and Inagaki, M. (2014) Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat. Commun. 5, 5081. https://doi.org/10.1038/ncomms6081
  19. Kihara, A., Kabeya, Y., Ohsumi, Y. and Yoshimori, T. (2001) Beclinphosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2, 330-335. https://doi.org/10.1093/embo-reports/kve061
  20. Kim, E. S., Shin, J. H., Park, S. J., Jo, Y. K., Kim, J. S., Kang, I. H., Nam, J. B., Chung, D. Y., Cho, Y., Lee, E. H., Chang, J. W. and Cho, D. H. (2015a) Inhibition of autophagy suppresses sertralinemediated primary ciliogenesis in retinal pigment epithelium cells. PLoS ONE 10, e0118190. https://doi.org/10.1371/journal.pone.0118190
  21. Kim, J., Jo, H., Hong, H., Kim, M. H., Kim, J. M., Lee, J. K., Heo, W. D. and Kim, J. (2015b) Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat. Commun. 6, 6781. https://doi.org/10.1038/ncomms7781
  22. Kobayashi, T. and Itoh, H. (2017) Loss of a primary cilium in PDAC. Cell Cycle 16, 817-818. https://doi.org/10.1080/15384101.2017.1304738
  23. Lechtreck, K. F. (2015) IFT-cargo interactions and protein transport in cilia. Trends Biochem. Sci. 40, 765-778. https://doi.org/10.1016/j.tibs.2015.09.003
  24. Lee, J., Yi, S., Kang, Y. E., Chang, J. Y., Kim, J. T., Sul, H. J., Kim, J. O., Kim, J. M., Kim, J., Porcelli, A. M., Kim, K. S. and Shong, M. (2016) Defective ciliogenesis in thyroid hurthle cell tumors is associated with increased autophagy. Oncotarget 7, 79117-79130. https://doi.org/10.18632/oncotarget.12997
  25. Liu, Z. Q., Lee, J. N., Son, M., Lim, J. Y., Dutta, R. K., Maharjan, Y., Kwak, S., Oh, G. T., Byun, K., Choe, S. K. and Park, R. (2018) Ciliogenesis is reciprocally regulated by PPARA and NR1H4/FXR through controlling autophagy in vitro and in vivo. Autophagy 14, 1011-1027.
  26. Malicki, J. J. and Johnson, C. A. (2017) The cilium: cellular antenna and central processing unit. Trends Cell Biol. 27, 126-140. https://doi.org/10.1016/j.tcb.2016.08.002
  27. Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., Coppes, R. P., Engedal, N., Mari, M. and Reggiori, F. (2018) Chloroquine inhibits autophagic flux by decreasing autophagosomelysosome fusion. Autophagy 14, 1435-1455. https://doi.org/10.1080/15548627.2018.1474314
  28. Menzl, I., Lebeau, L., Pandey, R., Hassounah, N. B., Li, F. W., Nagle, R., Weihs, K. and McDermott, K. M. (2014) Loss of primary cilia occurs early in breast cancer development. Cilia 3, 7. https://doi.org/10.1186/2046-2530-3-7
  29. Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011) The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005
  30. Moon, H., Song, J., Shin, J. O., Lee, H., Kim, H. K., Eggenschwiller, J. T., Bok, J. and Ko, H. W. (2014) Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling. Proc. Natl. Acad. Sci. U.S.A. 111, 8541-8546. https://doi.org/10.1073/pnas.1323161111
  31. Nakatogawa, H., Ichimura, Y. and Ohsumi, Y. (2007) Atg8, a ubiquitinlike protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165-178. https://doi.org/10.1016/j.cell.2007.05.021
  32. Nobutani, K., Shimono, Y., Yoshida, M., Mizutani, K., Minami, A., Kono, S., Mukohara, T., Yamasaki, T., Itoh, T., Takao, S., Minami, H., Azuma, T. and Takai, Y. (2014) Absence of primary cilia in cell cycle-arrested human breast cancer cells. Genes Cells 19, 141-152. https://doi.org/10.1111/gtc.12122
  33. Okada, Y., Nonaka, S., Tanaka, Y., Saijoh, Y., Hamada, H. and Hirokawa, N. (1999) Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 4, 459-468. https://doi.org/10.1016/S1097-2765(00)80197-5
  34. Pampliega, O. and Cuervo, A. M. (2016) Autophagy and primary cilia: dual interplay. Curr. Opin. Cell Biol. 39, 1-7. https://doi.org/10.1016/j.ceb.2016.01.008
  35. Pampliega, O., Orhon, I., Patel, B., Sridhar, S., Diaz-Carretero, A., Beau, I., Codogno, P., Satir, B. H., Satir, P. and Cuervo, A. M. (2013) Functional interaction between autophagy and ciliogenesis. Nature 502, 194-200. https://doi.org/10.1038/nature12639
  36. Plotnikova, O. V., Nikonova, A. S., Loskutov, Y. V., Kozyulina, P. Y., Pugacheva, E. N. and Golemis, E. A. (2012) Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis. Mol. Biol. Cell 23, 2658-2670. https://doi.org/10.1091/mbc.e11-12-1056
  37. Plotnikova, O. V., Pugacheva, E. N. and Golemis, E. A. (2009) Primary cilia and the cell cycle. Methods Cell Biol. 94, 137-160. https://doi.org/10.1016/S0091-679X(08)94007-3
  38. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. and Golemis, E. A. (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351-1363. https://doi.org/10.1016/j.cell.2007.04.035
  39. Ritter, A., Friemel, A., Kreis, N. N., Hoock, S. C., Roth, S., Kielland-Kaisen, U., Bruggmann, D., Solbach, C., Louwen, F. and Yuan, J. (2018) Primary cilia are dysfunctional in obese adipose-derived mesenchymal stem cells. Stem Cell Reports 10, 583-599. https://doi.org/10.1016/j.stemcr.2017.12.022
  40. Seeley, E. S., Carriere, C., Goetze, T., Longnecker, D. S. and Korc, M. (2009a) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69, 422-430. https://doi.org/10.1158/0008-5472.CAN-08-1290
  41. Seeley, E. S., Carriere, C., Goetze, T., Longnecker, D. S. and Korc, M. (2009b) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69, 422-430. https://doi.org/10.1158/0008-5472.CAN-08-1290
  42. Servattalab, S., Yildiz, O. and Khanna, H. (2012) Tackling primary cilia dysfunction in photoreceptor degenerative diseases of the eye. Int. J. Ophthalmic. Pathol. 1, e101.
  43. Shin, J. H., Bae, D. J., Kim, E. S., Kim, H. B., Park, S. J., Jo, Y. K., Jo, D. S., Jo, D. G., Kim, S. Y. and Cho, D. H. (2015a) Autophagy regulates formation of primary cilia in mefloquine-treated cells. Biomol Ther (Seoul) 23, 327-232. https://doi.org/10.4062/biomolther.2015.025
  44. Shin, J. H., Kim, P. S., Kim, E. S., Park, S. J., Jo, Y. K., Hwang, J. J., Park, T. J., Chang, J. W., Seo, J. H. and Cho, D. H. (2015b) BIX-01294-induced autophagy regulates elongation of primary cilia. Biochem. Biophys. Res. Commun. 460, 428-433. https://doi.org/10.1016/j.bbrc.2015.03.050
  45. Song, D. K., Choi, J. H. and Kim, M. S. (2018) Primary cilia as a signaling platform for control of energy metabolism. Diabetes Metab. J. 42, 117-127. https://doi.org/10.4093/dmj.2018.42.2.117
  46. Stanley, R. E., Ragusa, M. J. and Hurley, J. H. (2014) The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol. 24, 73-81. https://doi.org/10.1016/j.tcb.2013.07.008
  47. Struchtrup, A., Wiegering, A., Stork, B., Ruther, U. and Gerhardt, C. (2018) The ciliary protein RPGRIP1L governs autophagy independently of its proteasome-regulating function at the ciliary base in mouse embryonic fibroblasts. Autophagy 14, 567-583. https://doi.org/10.1080/15548627.2018.1429874
  48. Takahashi, K., Nagai, T., Chiba, S., Nakayama, K. and Mizuno, K. (2018) Glucose deprivation induces primary cilium formation through mTORC1 inactivation. J. Cell Sci. 131, jcs208769. https://doi.org/10.1242/jcs.208769
  49. Tang, Z., Lin, M. G., Stowe, T. R., Chen, S., Zhu, M., Stearns, T., Franco, B. and Zhong, Q. (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502, 254-257. https://doi.org/10.1038/nature12606
  50. Taschner, M., Bhogaraju, S. and Lorentzen, E. (2012) Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83, S12-S22. https://doi.org/10.1016/j.diff.2011.11.001
  51. Taylor, S. P., Dantas, T. J., Duran, I., Wu, S., Lachman, R. S.; University of Washington Center for Mendelian Genomics Consortium, Nelson, S. F., Cohn, D. H., Vallee, R. B. and Krakow, D. (2015) Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat. Commun. 6, 7092. https://doi.org/10.1038/ncomms8092
  52. Tong, Y., Park, S. H., Wu, D., Xu, W., Guillot, S. J., Jin, L., Li, X., Wang, Y., Lin, C. S. and Fu, Z. (2017) An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome. FEBS Lett. 591, 1247-1257. https://doi.org/10.1002/1873-3468.12644
  53. Volta, F. and Gerdes, J. M. (2017) The role of primary cilia in obesity and diabetes. Ann. N. Y. Acad. Sci. 1391, 71-84. https://doi.org/10.1111/nyas.13216
  54. Wang, S., Livingston, M. J., Su, Y. and Dong, Z. (2015) Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy 11, 607-616. https://doi.org/10.1080/15548627.2015.1023983
  55. Wang, Z. L., Deng, Q., Chong, T. and Wang, Z. M. (2018) Autophagy suppresses the proliferation of renal carcinoma cell. Eur. Rev. Med. Pharmacol. Sci. 22, 343-350.
  56. Wheway, G., Parry, D. A. and Johnson, C. A. (2014) The role of primary cilia in the development and disease of the retina. Organogenesis 10, 69-85. https://doi.org/10.4161/org.26710
  57. White, E. (2015) The role for autophagy in cancer. J. Clin. Invest. 125, 42-46. https://doi.org/10.1172/JCI73941
  58. Wiegering, A., Ruther, U. and Gerhardt, C. (2019) The role of primary cilia in the crosstalk between the ubiquitin-proteasome system and autophagy. Cells 8, 241. https://doi.org/10.3390/cells8030241
  59. Xiao, Z. S. and Quarles, L. D. (2010) Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann. N. Y. Acad. Sci. 1192, 410-421. https://doi.org/10.1111/j.1749-6632.2009.05239.x
  60. Xu, Q., Liu, W., Liu, X., Liu, W., Wang, H., Yao, G., Zang, L., Hayashi, T., Tashiro, S., Onodera, S. and Ikejima, T. (2016) Silibinin negatively contributes to primary cilia length via autophagy regulated by histone deacetylase 6 in confluent mouse embryo fibroblast 3T3-L1 cells. Mol. Cell. Biochem. 420, 53-63. https://doi.org/10.1007/s11010-016-2766-2
  61. Xu, Q., Liu, W., Liu, X., Otkur, W., Hayashi, T., Yamato, M., Fujisaki, H., Hattori, S., Tashiro, S. I. and Ikejima, T. (2018) Type I collagen promotes primary cilia growth through down-regulating HDAC6-mediated autophagy in confluent mouse embryo fibroblast 3T3-L1 cells. J. Biosci. Bioeng. 125, 8-14. https://doi.org/10.1016/j.jbiosc.2017.07.012
  62. Yang, S. H., Wang, X. X., Contino, G., Liesa, M., Sahin, E., Ying, H. Q., Bause, A., Li, Y. H., Stommel, J. M., Dell'Antonio, G., Mautner, J., Tonon, G., Haigis, M., Shirihai, O. S., Doglioni, C., Bardeesy, N. and Kimmelman, A. C. (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717-729. https://doi.org/10.1101/gad.2016111
  63. Youn, Y. H. and Han, Y. G. (2018) Primary cilia in brain development and diseases. Am. J. Pathol. 188, 11-22. https://doi.org/10.1016/j.ajpath.2017.08.031
  64. Yuan, K., Frolova, N., Xie, Y., Wang, D., Cook, L., Kwon, Y. J., Steg, A. D., Serra, R. and Frost, A. R. (2010) Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J. Histochem. Cytochem. 58, 857-870. https://doi.org/10.1369/jhc.2010.955856
  65. Zhao, Y. G. and Zhang, H. (2019) Autophagosome maturation: an epic journey from the ER to lysosomes. J. Cell Biol. 218, 757-770. https://doi.org/10.1083/jcb.201810099
  66. Zhi, X. and Zhong, Q. (2015) Autophagy in cancer. F1000Prime Rep. 7, 18. https://doi.org/10.12703/p7-18
  67. Zingg, D., Debbache, J., Pena-Hernandez, R., Antunes, A. T., Schaefer, S. M., Cheng, P. F., Zimmerli, D., Haeusel, J., Calcada, R. R., Tuncer, E., Zhang, Y., Bossart, R., Wong, K. K., Basler, K., Dummer, R., Santoro, R., Levesque, M. P. and Sommer, L. (2018) EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell 34, 69-84.e14. https://doi.org/10.1016/j.ccell.2018.06.001

Cited by

  1. The Autophagy Regulator p62 Controls PTEN-Dependent Ciliogenesis vol.8, 2019, https://doi.org/10.3389/fcell.2020.00465
  2. Mechanobiology of Autophagy: The Unexplored Side of Cancer vol.11, 2019, https://doi.org/10.3389/fonc.2021.632956
  3. Crosstalk between autophagy and microbiota in cancer progression vol.20, pp.1, 2019, https://doi.org/10.1186/s12943-021-01461-0