DOI QR코드

DOI QR Code

NdFeB 자석 재활용을 위한 파분쇄 및 그에 따른 표면 산화 특성 연구

Breakage and Surface Oxidation Characteristics of Waste NdFeB Magnet for Recycling

  • 김관호 (한국지질자원연구원 DMR 융합연구단) ;
  • 김가희 (한국지질자원연구원 DMR 융합연구단) ;
  • 이훈 (한국지질자원연구원 자원회수연구센터) ;
  • 강정신 (한국지질자원연구원 DMR 융합연구단)
  • Kim, Kwanho (DMR Convergence Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Gahee (DMR Convergence Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hoon (Resource Recovery Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Kang, Jungshin (DMR Convergence Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2019.04.08
  • 심사 : 2019.05.21
  • 발행 : 2019.06.30

초록

희토류 영구자석(Rare earth magnet)은 사용량이 급격하게 증가하고 있으며, 이와 맞물려 폐희토류 자석의 발생량도 급격히 증가할 것으로 예측된다. 폐희토류 자석의 재활용은 주로 자석에 포함되어 있는 희토류 원소를 침출/분리하여 회수하는 공정으로 이루어지고 있으나, 침출 공정에 투입되는 폐희토류 자석의 분쇄 특성에 대한 연구는 전무한 실정이다. 따라서 본 연구에서는 폐희토류 자석을 이용하여 효과적인 파분쇄 공정 및 분쇄특성에 대한 연구를 진행하였다. NdFeB 폐자석을 조크러셔로 파쇄한 결과 급격한 산화 없이 효과적으로 입도가 감소는 하였지만, 롤크러셔의 경우 지속적인 압축에 의해 증가하는 표면과 대기 중의 산소가 반응하여 불꽃을 내며 급격한 산화가 발생하였다. 또한 파쇄 공정을 통해 생산된 시료를 볼밀에 투입하여 분쇄 특성을 파악한 결과, 일반적인 광물과 다르게 분쇄가 잘 이루어지지 않고 분쇄 16분 이후에 정상적인 분쇄가 이루어졌다. 또한 일반적인 광물에 비해 매우 낮은 분쇄율(S)과 미분이 발생이 매우 높은 분쇄분포(B)를 보임을 확인하였으며, 이는 향후 NdFeB 폐자석 파분쇄 공정 설계 시 기초자료로 사용될 수 있을 것으로 판단된다.

Due to the increasing demand of rare earth magnet for various application, it is predicted that the amount of waste rare earth magnet will increase sharply. The process of waste rare earth magnet recycling is mainly consisted of leaching and separation of rare earth element contained in the magnet. However, there is no study on the breakage characteristics of the waste rare earth magnet for production of magnet powder. Therefore, in this study, effective crushing/grinding process and breakage characteristics were investigated for waste rare earth magnet. In the case of jaw crusher, the particle size of magnet was effectively reduced without rapid oxidation. In ball mill grinding test, it was found that the grinding process was not performed properly at the early stage of grinding. Moreover, waste rare earth magnet showed very low specific rate of breakage(S) and high fraction of fine particle breakage distribution(B) compared to ordinary minerals. These results can be used as a basic data for developing crushing/grinding circuit of waste rare earth magnet.

키워드

RSOCB3_2019_v28n3_26_f0001.png 이미지

Fig. 1. Waste rare earth magnet sample used in this study (12.3 mm(d) × 1.45 mm(h)).

RSOCB3_2019_v28n3_26_f0002.png 이미지

Fig. 2. Typical breakage parameter graphs.

RSOCB3_2019_v28n3_26_f0003.png 이미지

Fig. 3. Cumulative size distribution of jaw crusher product.

RSOCB3_2019_v28n3_26_f0004.png 이미지

Fig. 4. Cumulative size distribution of waste rare earth magnet as a function of grinding time.

RSOCB3_2019_v28n3_26_f0005.png 이미지

Fig. 5. Mass fraction of intermediate size (0.3 mm ~ 0.85 mm) as a function of grinding time.

RSOCB3_2019_v28n3_26_f0006.png 이미지

Fig. 6. Comparison of particle size distribution between calculated value and experiment value.

Table 1. Worldwide consumption of rare earth oxide (2008)3)

RSOCB3_2019_v28n3_26_t0001.png 이미지

Table 2. Chemical composition of main element of feed sample

RSOCB3_2019_v28n3_26_t0002.png 이미지

Table 3. Grinding condition of ball milling

RSOCB3_2019_v28n3_26_t0003.png 이미지

Table 5. Variation of oxygen concentration of crushing/grinding product

RSOCB3_2019_v28n3_26_t0004.png 이미지

Table 4. Breakage parameters of waste rare earth magnet

RSOCB3_2019_v28n3_26_t0005.png 이미지

참고문헌

  1. Ah Ram Seo, 2015 : Effect of grinding on the oxidation roasting and leaching of NdFeB permanent magnet scrap, Master-thesis. Hanyang University.
  2. Byung Joo Kim, Hyong Seok Kim, Ho Sung Yoon, Bong Gyoo Cho, and Tak Hur, 2013 : An Eco-efficiency anlaysis of Nd permanent magnet recycling, Journal of the Korean Institute of Recycling, 22(4), pp.55-61.
  3. Thomas, G., Goonan, 2011 : Rare Earth Elements-End Use and Recyclability, USGS.
  4. Jae Chun Lee, Won Back Kim, Jin Gi Jung, and In Joo Yoon, 1998 : Extraction of Neodymium from Nd-Fe-B magnet scraps by Sulfuric Acid, J. of the Korean Inst. of Met. & Mater., 36(6), pp.967-972.
  5. Ho Sung Yoon, Chul Joo Kim, Jin Young Lee, Sung Don Kim, et al., 2003 : Separation of Neodymium from NdFeB Permanent Magnetic Scrap, Journal of the Korean Institute of Recycling, 12(6), pp.57-63.
  6. Tomohiko Akahori, Yu Miyamoto, Tomonori Saeki, Masahide Okamoto, and Toru. H. Okabe, 2017 : Optimum conditions for extracting rare earth metals from waste magnets by using molten magnesium, Journal of Alloys and Compounds, 703, pp.337-343. https://doi.org/10.1016/j.jallcom.2017.01.211
  7. Austin, L. G., Klimpel, R. R., and Luckie, P. T., 1984 : Process Engineering of Size Reduction Ball Milling, Society of Mining Engineers, New York.
  8. Jung Yoon Kim, 2001 : Development of Grinding Circuit Simulators using Mathematical Grinding Model, Masterthesis. Seoul National University.
  9. Hoon Lee and Hee Chan Cho, 2002 : Determination of the breakage parameters on the non metallic minerals, Journal of the Korean Society of Mineral and Energy Resources Engineers, 37(4), pp.248-256.
  10. Hoon Lee, Kwan Ho Kim, Wan Tae Kim, and Sang Bae Kim, 2013 : Determination of Breakage parameters in Mathematical grinding model by weight-adjustment Modification, Journal of the Korean Society of Mineral and Energy Resources Engineers, 50(1), pp.80-87. https://doi.org/10.12972/ksmer.2013.50.1.080