DOI QR코드

DOI QR Code

Physiological activities of extracts of wild mushrooms collected in Korea

국내 야생수집 버섯류 추출물의 생리활성 분석

  • An, Gi-Hong (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Jae-Han (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Kang-Hyo (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Han, Jae-Gu (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 안기홍 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 조재한 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 이강효 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 한재구 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과)
  • Received : 2019.05.13
  • Accepted : 2019.06.20
  • Published : 2019.06.30

Abstract

This study was carried out to analyze the physiological activities of wild mushroom extracts collected from the Gangwon-do, Gyeonggi-do, and Chungcheongbuk-do provinces in Korea. Among the wild mushroom extracts, those of Clitocybe robusta and Leucopaxillus giganteus (OK829) showed the highest DPPH radical scavenging activities. Nitrite scavenging activity of the L. giganteus extract (OK811) was determined to be 64.1%, which is considerably higher than those of the other mushroom extracts analyzed in this study. The total polyphenol levels in Suillus granulatus, L. giganteus (OK829), and Amanita manginiana extracts were found to be 19.7 mg GAE/g, 20.2 mg GAE/g, and 22.3 mg GAE/g, respectively. To determine their anti-inflammatory effects, nitric oxide production, and cell viability, NO measurement and MTT assays were performed using lipopolysaccharide (LPS)-treated RAW 264.7 cells. The levels of nitric oxide (NO) produced by the C. robusta and Hypholoma fasciculare extracts were remarkably lower than those produced by the others. In our MTT assay, the extracts of S. granulatus, L. giganteus (OK811), and Lactarius chrysorrheus showed high cell viabilities of 40.3%, 48.3%, and 43.2%, respectively. These results can provide the fundamental data for extracting useful compounds from wild mushrooms.

국내 자생하는 야생버섯의 생리활성 및 항염 활성을 분석하기 위하여 버섯추출물에 대한 DPPH 라디컬 소거능, 아질산염 소거능, 총 폴리페놀 함량, NO 생성저해도 및 세포독성을 분석하였다. 국내 수집 야생버섯 중에서 DPPH 라디컬 소거능이 높은 버섯은 64.2%를 나타낸 박막깔때기버섯(OK825)과 69.7%를 보인 흰우단버섯(OK829)이었다. 아질산염 소거능은 흰우단버섯(OK811)이 64.1%로 가장 높았다. 야생수집 버섯류 중에서 가장 높은 총 폴리페놀 함량을 나타낸 것은 젖비단버섯(OK804), 흰우단버섯(OK829) 및 큰밤갈색광대버섯(OK944)으로 각각 19.7 mg GAE/g, 20.2 mg GAE/g, 22.3 mg GAE/g의 값을 보였다. NO 생성저해도의 경우, 박막깔때기버섯(OK825)과 노란다발버섯(OK826)은 각각 11.8%와 11.2%로 가장 낮은 NO를 생성하는 것으로 나타나 수집 버섯 추출물 중에서 가장 높은 항염증 효능을 보였다. MTT를 이용한 세포생존율(%)을 측정한 결과 젖비단그물버섯(OK804), 흰우단버섯(OK811), 노란젖버섯(OK904)의 추출물에서는 각각 40.3%, 48.3%, 43.2%로 가장 높은 생존율을 나타내었다. 본 연구결과는 국내 버섯산업의 확대를 위하여 우수버섯자원을 발굴함과 동시에 토종 버섯자원을 이용한 새로운 천연물 유래 생리활성 물질로 활용하기 위한 기초자료로 활용도가 높으리라 기대된다.

Keywords

BSHGBD_2019_v17n2_70_f0001.png 이미지

Fig. 1. Fruiting bodies of the wild mushrooms in this study (A, OK795; B, OK804; C, OK811; D, OK825; E, OK826; F, OK829; G, OK832; H, OK904; I, OK943; J, OK944).

BSHGBD_2019_v17n2_70_f0002.png 이미지

Fig. 2. DPPH radical scavenging activities of wild mushroom extracts (1mg/ml concentrations). White bar indicates a positive control. The results are represented by the mean ± S.D. of values obtained from three replications (OK795, Amanita manginiana; OK804, Suillus granulatus; OK811, Leucopaxillus giganteus; OK825, Clitocybe robusta; OK826, Hypholoma fasciculare; OK829, L. giganteus; OK832, Leucopaxillus sp.; OK904, Lactarius chrysorrheus; OK943, Pholiota limonella; OK944, A. manginiana). Different letters are significantly different by Duncan’s multiple range test (p<0.05).

BSHGBD_2019_v17n2_70_f0003.png 이미지

Fig. 3. Nitrite scavenging activities of wild mushroom extracts (1mg/ml concentrations). White bar indicates a positive control. The results are represented by the mean ± S.D. of values obtained from three replications (OK795, Amanita manginiana; OK804, Suillus granulatus; OK811, Leucopaxillus giganteus; OK825, Clitocybe robusta; OK826, Hypholoma fasciculare; OK829, L. giganteus; OK832, Leucopaxillus sp.; OK904, Lactarius chrysorrheus; OK943, Pholiota limonella; OK944, A. manginiana). Different letters are significantly different by Duncan’s multiple range test (p<0.05).

BSHGBD_2019_v17n2_70_f0004.png 이미지

Fig. 4. Total polyphenol contents of wild mushroom extracts (1mg/ml concentrations). White bar indicates a negative control. The results are represented by the mean ± S.D. of values obtained from three replications (OK795, Amanita manginiana; OK804, Suillus granulatus; OK811, Leucopaxillus giganteus; OK825, Clitocybe robusta; OK826, Hypholoma fasciculare; OK829, L. giganteus; OK832, Leucopaxillus sp.; OK904, Lactarius chrysorrheus; OK943, Pholiota limonella; OK944, A. manginiana). Different letters are significantly different by Duncan’s multiple range test (p<0.05).

BSHGBD_2019_v17n2_70_f0005.png 이미지

Fig. 5. The suppression rates of nitric oxide (NO) by the treatment of wild mushrooms extracts were determined by using NO assay. RAW 264.7 cells were incubated under 1 μg/ml concentration of lipopolysaccharide (LPS) and wild mushrooms extracts. White bars indicate positive and negative controls. The results are represented by the mean ± S.D. of values obtained from three replications (OK795, Amanita manginiana; OK804, Suillus granulatus; OK811, Leucopaxillus giganteus; OK825, Clitocybe robusta; OK826, Hypholoma fasciculare; OK829, L. giganteus; OK832, Leucopaxillus sp.; OK904, Lactarius chrysorrheus; OK943, Pholiota limonella; OK944, A. manginiana). Different letters are significantly different by Duncan’s multiple range test (p<0.05).

BSHGBD_2019_v17n2_70_f0006.png 이미지

Fig. 6. The rates of cell viability after treating wild mushrooms extracts. Viability of RAW 264.7 cells harvest at 24 hr after 1 μg/ml concentration of LPS addition was determined using MTT assay. White bars indicate positive and negative controls. The results are represented by the mean ± S.D. of values obtained from three replications (OK795, Amanita manginiana; OK804, Suillus granulatus; OK811, Leucopaxillus giganteus; OK825, Clitocybe robusta; OK826, Hypholoma fasciculare; OK829, L. giganteus; OK832, Leucopaxillus sp.; OK904, Lactarius chrysorrheus; OK943, Pholiota limonella; OK944, A. manginiana). Different letters are significantly different by Duncan’s multiple range test (p<0.05).

Table 1. List of the strains/specimens used in this study.

BSHGBD_2019_v17n2_70_t0001.png 이미지

References

  1. Barros L, Baptista P, Estevinho LM, Ferreira ICFR. 2007. Effects of fruiting body maturity stage on chemical composition and antimicrobial activity of Lacarius sp. mushrooms. J Agri Food Chem 55: 4781-4788. https://doi.org/10.1021/jf070407o
  2. Chang ST, Miles PG. 1989. Mushroom science in "Edible mushrooms and their cultivation" CRC Press, Inc. pp. 3-28.
  3. Cho JH, Lee JY, Lee MJ, Oh HN, Kang DH, Jhune CS. 2013. Comparative analysis of useful $\beta$-glucan and polyphenol in the fruiting bodies of Ganoderma spp. J Mushroom Sci Prod 11: 164-170. https://doi.org/10.14480/JM.2013.11.3.164
  4. Cho JH, Park HS, Han JG, Lee GY, Sung GH, Jhune CS. 2014. Comparative analysis of anti-oxidant effects and polyphenol contents of the fruiting bodies in oyster mushrooms. J Mushroom Sci Prod 12: 311-315. https://doi.org/10.14480/JM.2014.12.4.311
  5. Cho JH, Park HS, Han JG, Lee KH, Jhune CS. 2015. Antidiabetic efficacy of the alcoholic extracts in Ganoderma sp. and Phellinus baumi. J Mushroom Sci Prod 13: 326-329. https://doi.org/10.14480/JM.2015.13.4.326
  6. Choi JS, Park SH, Choi JH. 1989.. Nitrite scavenging effect by flavonoids and its structure-effect relationship. Archives of Pharmacal Research 12: 26-33. https://doi.org/10.1007/BF02855742
  7. Choi DB, Cho KA, Na MS, Choi HS, Kim YO, Lim DH, Cho SJ, Cho H. 2008. Effect of bamboo oil on antioxidative activity and nitrite scavenging activity. J Ind Eng Chem 14: 765-770. https://doi.org/10.1016/j.jiec.2008.06.005
  8. Choi JH, Kim GS, Lee SE, Cho JH, Sung GH, Lee DY, Kim SY, Lee TH, Noh HJ. 2012. Anti-inflammatory effects Cordyceps militaris extracts. J Mushroom Sci Pro 10: 249-253.
  9. Chung SY, Kim NK, Yoon S. 1999. Nitrite scavenging effect of methanol fraction obtained from green yellow vegetable juices. J Korean Soc Food Sci Nutr 28: 342-347.
  10. Folin O, Denis W. 1912. On phosphotungsticphosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243. https://doi.org/10.1016/S0021-9258(18)88697-5
  11. Gardner PR, Fridovich I. 1991. Superoxide sensitivity of Escherichiacoli 6-phosphogluconate dehydratase. J Biol Chem 266: 1478-1783. https://doi.org/10.1016/S0021-9258(18)52319-X
  12. Gray JI, Dugan Jr LR. 1975. Inhibition of N-nitrosamine formation in model food systems. J Food Sci 40: 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  13. Hossain S, Hsahimoto M, Choudhury EK, Alam N. 2003. Dietary mushroom Pleurotus ostreatus ameliorated atherogenic lipid in hypercholesterolacmic rats. Clin Exp Pharmacol P 30: 470-475. https://doi.org/10.1046/j.1440-1681.2003.03857.x
  14. Krik PM, Cannon PF, David JC, Stalpers JA. 2001. Ainsworth and Bisby's dictionary of the fungi. 9th edition, CAB International publishing, 650pp
  15. Kwon SC. 2011. Biological activities of ethanol extracts from Hericium erinaceus mycelium on Angelica keiskei and Angelica Keiskei pomace. J Korean Soc Food Sci Nurt 40: 1648-165. https://doi.org/10.3746/jkfn.2011.40.12.1648
  16. Lee JH, Do JR, Chung MY, Kim KH. 2014. Antioxidant activities of Pleurotus cornucopiae extracts by extraction conditions. J Korean Soc Food Sci Nutr 43: 836-841. https://doi.org/10.3746/jkfn.2014.43.6.836
  17. Lillian B, Paula B, Daniela M, Susana C, Beatriz O, Isabel C. 2007. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem 105: 140-145. https://doi.org/10.1016/j.foodchem.2007.03.052
  18. Manzi P, Aguzzi A, Pizzoferrato L. 2001. Nutritional value of mushrooms widely consumed in Italy. Food Chem 73:321-325. https://doi.org/10.1016/S0308-8146(00)00304-6
  19. Noh JG, Park JS, Choi JS, Song IG, Yun T, Min KB. 2009. A study of useful wild mushroom by segregation and identification native in middle area. Korean J Mushroom Sci 7: 49-52.
  20. Noh HJ, Choi SI, Lee KH, Jang KY, Cho JH, Sung GH, Kim GS, Lee SE, Kim SY. 2011. Anti-inflammatory effects of mushroom extracts in Korea. J Mushroom Sci Pro 9: 84-86.
  21. Sohn HY, Shin YK, Kim JS. 2010. Anti-proliferative activities of solid-state fermented medicinal herbs using Phelimus baumii against human colorectal HCT116 cell. J Life Sci 20: 1268-1275. https://doi.org/10.5352/JLS.2010.20.8.1268
  22. Park YH, Yang SK, Cha DY. 1978. Investigation on artificial culture for new edible wild mushrooms. Korean J Mycology 6: 25-28.
  23. Park WM, Kim GH, Hyeon JW. 1995. New synthetic medium for growth of mycelium of Pleurotus species. Korean J Mycol 23: 275-283.
  24. Qi Y, ZhaoX, Lim YL, Park KY. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J Korean Soc Food Sci Nutr 42: 655-662. https://doi.org/10.3746/jkfn.2013.42.5.655