DOI QR코드

DOI QR Code

Semi-interpenetrating Solid Polymer Electrolyte for LiCoO2-based Lithium Polymer Batteries Operated at Room Temperature

  • Nguyen, Tien Manh (Center for Advanced Battery Materials, Advanced Materials Division, KRICT) ;
  • Suk, Jungdon (Center for Advanced Battery Materials, Advanced Materials Division, KRICT) ;
  • Kang, Yongku (Center for Advanced Battery Materials, Advanced Materials Division, KRICT)
  • Received : 2018.12.20
  • Accepted : 2019.02.26
  • Published : 2019.06.30

Abstract

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) show promise for improving the lithium ion battery safety. However, due to oxidation of the PEO group and corrosion of the Al current collector, PEO-based SPEs have not previously been effective for use in $LiCoO_2$ (LCO) cathode materials at room temperature. In this paper, a semi-interpenetrating polymer network (semi-IPN) PEO-based SPE was applied to examine the performance of a LCO/SPE/Li metal cell at different voltage ranges. The results indicate that the SPE can be applied to LCO-based lithium polymer batteries with high electrochemical performance. By using a carbon-coated aluminum current collector, the Al corrosion was mostly suppressed during cycling, resulting in improvement of the cell cycle stability.

Keywords

E1JTC5_2019_v10n2_250_f0002.png 이미지

Fig. 5. Initial cyclic voltammetry of Al/SPE/Li cells using C-coated Al and bare Al current collector at a scan rate of 0.5 mV s-1 and at potential range from OCV to 4.5 V.

E1JTC5_2019_v10n2_250_f0003.png 이미지

Fig. 6. Nyquist plots of LCO/SPE/Li cell with potential range from 3 V to 4.2 V at 0.5 C using (a) C-coated Al and (b) bare Al.

E1JTC5_2019_v10n2_250_f0004.png 이미지

Fig. 1. (a) Temperature dependence of the ionic conductivity of SPE at various temperature range from - 10 to 100℃, (b) Linear sweep voltammetry of a stainless steel/SPE/Li metal coin cell at a scan rate of 0.5 mV s-1 and at potential range from 2 to 5.5 V.

E1JTC5_2019_v10n2_250_f0005.png 이미지

Fig. 2. Voltage profiles of LCO/SPE/Li cells with charge and discharge current density 0.1 C at different potential ranges.

E1JTC5_2019_v10n2_250_f0006.png 이미지

Fig. 3. (a) Rate capability of LCO/SPE/Li cells with various charge and discharge current density ranged from 0.2 C to 2 C at different potential ranges, (b) Capacity retention values of various discharge capacity.

E1JTC5_2019_v10n2_250_f0007.png 이미지

Fig. 4. (a) Cycling performance of LCO/SPE/Li cells using bare Al with different potential ranges at 0.5 C, (b) Cycling performance of LCO/SPE/Li cells using C-coated and bare Al with potential range from 3 V to 4.2 V at 0.5 C.

References

  1. J.B. Goodenough, Y. Kim, Chem. Mater., 2009, 22(3), 587-603. https://doi.org/10.1021/cm901452z
  2. N.H. Idris, M.M. Rahman, J.-Z. Wang, H.-K. Liu, J. Power Sources, 2012, 201, 294-300. https://doi.org/10.1016/j.jpowsour.2011.10.141
  3. F. Cheng, J. Liang, Z. Tao, J. Chen, Adv. Mater., 2011, 23(15), 1695-1715. https://doi.org/10.1002/adma.201003587
  4. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci., 2011, 4(9), 3243-3262. https://doi.org/10.1039/c1ee01598b
  5. L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A, 2016, 4(26), 10038-10069. https://doi.org/10.1039/C6TA02621D
  6. D.E. Fenton, J.M. Parker, P.V. Wright, Polymer (Guildf), 1973, 14, 589.
  7. R. Taslim, M.Y.A. Rahman, M.M. Salleh, A.A. Umar, A. Ahmad, Ionics (Kiel), 2010, 16(7), 639-644. https://doi.org/10.1007/s11581-010-0442-1
  8. A. Ghosh, C. Wang, P. Kofinas, J. Electrochem. Soc., 2010, 157(7), A846-A849. https://doi.org/10.1149/1.3428710
  9. K. Xu, Chem. Rev., 2004, 104(10), 4303-4418. https://doi.org/10.1021/cr030203g
  10. L. Wang, X. Li, W. Yang, Electrochim. Acta, 2010, 55(6), 1895-1899. https://doi.org/10.1016/j.electacta.2009.11.003
  11. L.M. Bronstein, C. Joo, R. Karlinsey, A. Ryder, J.W. Zwanziger, Chem. Mater., 2001, 13(10), 3678-3684. https://doi.org/10.1021/cm011066b
  12. T. Niitani, M. Amaike, H. Nakano, K. Dokko, K. Kanamura, J. Electrochem. Soc., 2009, 156(7), A577-A583. https://doi.org/10.1149/1.3129245
  13. D. He, S.Y. Cho, D.W. Kim, C. Lee, Y. Kang, Macromolecules, 2012, 45(19), 7931-7938. https://doi.org/10.1021/ma3016745
  14. M. Ueno, N. Imanishi, K. Hanai, T. Kobayashi, A. Hirano, O. Yamamoto, Y. Takeda, J. Power Sources, 2011, 196(10), 4756-4761. https://doi.org/10.1016/j.jpowsour.2011.01.054
  15. D. He, D.W. Kim, J.S. Park, S.Y. Cho, Y. Kang, J. Power Sources, 2013, 244, 170-176. https://doi.org/10.1016/j.jpowsour.2013.02.069
  16. P. Basak, Solid State Ionics, 2004, 167(1-2), 113-121. https://doi.org/10.1016/j.ssi.2004.01.004
  17. Y. Xia, K. Tatsumi, T. Fujieda, P.P. Prosini, T. Sakai, J. Electrochem. Soc., 2000, 147(6), 2050-2056. https://doi.org/10.1149/1.1393484
  18. Q. Li, Y. Takeda, N. Imanish, J. Yang, H.Y. Sun, O. Yamamoto, J. Power Sources, 2001, 97, 795-797. https://doi.org/10.1016/S0378-7753(01)00610-3
  19. J.R. Nair, M. Destro, F. Bella, G.B. Appetecchi, C. Gerbaldi, J. Power Sources, 2016, 306, 258-267. https://doi.org/10.1016/j.jpowsour.2015.12.001
  20. H. Ben youcef, O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Electrochim. Acta, 2016, 220, 587-594. https://doi.org/10.1016/j.electacta.2016.10.122
  21. Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, Ceram. Int., 2015, 41(1), 469-474. https://doi.org/10.1016/j.ceramint.2014.08.093
  22. H. Yang, K. Kwon, T.M. Devine, J.W. Evans, J. Electrochem. Soc., 2000, 147(12), 4399-4407. https://doi.org/10.1149/1.1394077
  23. R.-S. Kuhnel, A. Balducci, J. Power Sources, 2014, 249, 163-171. https://doi.org/10.1016/j.jpowsour.2013.10.072
  24. K. Matsumoto, K. Inoue, K. Nakahara, R. Yuge, T. Noguchi, K. Utsugi, J. Power Sources, 2013, 231, 234-238. https://doi.org/10.1016/j.jpowsour.2012.12.028
  25. H.-C. Wu, H.-C. Wu, E. Lee, N.-L. Wu, Electrochem. Commun., 2010, 12, 488-491. https://doi.org/10.1016/j.elecom.2010.01.028
  26. I. Doberdo, N. Loffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G.-T. Kim, S. Passerini, J. Power Sources, 2014, 248, 1000-1006. https://doi.org/10.1016/j.jpowsour.2013.10.039
  27. P. Swain, M. Viji, P.S.V. Mocherla, C. Sudakar, J. Power Sources, 2015, 293, 613-625. https://doi.org/10.1016/j.jpowsour.2015.05.110
  28. H. Gao, T. Ma, T. Duong, L. Wang, X. He, I. Lyubinetsky, Z. Feng, F. Maglia, P. Lamp, K. Amine, Z. Chen, Mater. Today Energy, 2018, 7, 18-26. https://doi.org/10.1016/j.mtener.2017.12.001
  29. T. Ma, G.-L. Xu, Y. Li, L. Wang, X. He, J. Zheng, J. Liu, M.H. Engelhard, P. Zapol, L.A. Curtiss, J. Jorne, K. Amine, Z. Chen, J. Phys. Chem. Lett., 2017, 8(5), 1072-1077. https://doi.org/10.1021/acs.jpclett.6b02933
  30. C. Gerbaldi, J.R. Nair, G. Meligrana, R. Bongiovanni, S. Bodoardo, N. Penazzi, Electrochim. Acta, 2010, 55(4), 1460-1467. https://doi.org/10.1016/j.electacta.2009.05.055
  31. S. Ohta, T. Kobayashi, J. Seki, T. Asaoka, J. Power Sources, 2012, 202, 332-335. https://doi.org/10.1016/j.jpowsour.2011.10.064