References
- Bewick, R.P., Kaiser, P.K. and Bawden, W.F. (2013), "DEM simulation of direct shear: 2. Grain boundary and mineral grain strength component influence on shear rupture", Rock Mech. Rock Eng., 47(5), 1673-1692. https://doi.org/10.1007/s00603-013-0494-4.
- Bewick, R.P., Kaiser, P.K., Bawden, W.F. and Bahrani, N. (2013), "DEM simulation of direct shear: 1. Rupture under constant normal stress boundary conditions", Rock Mech. Rock Eng., 47(5), 1647-1671. https://doi.org/10.1007/s00603-013-0490-8.
- Cai, M. and Kaiser, P.K. (2004), "Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks", Int. J. Rock Mech. Min. Sci., 41, 478-483. https://doi.org/10.1016/j.ijrmms.2004.03.086
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29, 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Dan, D.Q., Konietzky, H. and Herbst, M. (2013), "Brazilian tensile strength tests on some anisotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7. https://doi.org/10.1016/j.ijrmms.2012.08.010.
- Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solid., 22, 1205-1218. https://doi.org/10.1177/1081286515625436.
- Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001.
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45, 677- 693. https://doi.org/10.1007/s00603-012-0233-2.
- Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 124. https://doi.org/10.1007/s12517-015-2137-4.
- Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723.
- Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6.
- Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinica., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.
- Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939.
- Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016b), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinica., 5, 555-566. https://doi.org/10.1016/S0894-9166(16)30273-7.
- Itasca Consulting Group Inc. (2004), Particle Flow Code in 2-Dimensions, Problem Solving with PFC2D, Version 3.1, Itasca Consulting Group Inc., Minneapolis.
- Khanlari, G., Rafiei, B. and Abdilor, Y. (2014), "An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones", Rock Mech. Rock Eng., 48(2), 843-852. https://doi.org/10.1007/s00603-014-0576-y.
- Kim, J. and Taha, M.R. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civil Eng., 2014, Article ID 156926, 8. http://dx.doi.org/10.1155/2014/156926.
- Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046.
- Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measur., 82, 421-431. https://doi.org/10.1016/j.measurement.2017.04.002.
- Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002.
- Liu, Y.S., Fu, H.L., Rao, J.Y., Dong, H. and Cao, Q. (2012), "Research on Brazilian discsplittingtestsfor anisotropyof slateunder influenceofdifferent bedding orientation", Chin. J. Rock Mech. Eng., 31, 785-791. (in Chinese) https://doi.org/10.3969/j.issn.1000-6915.2012.04.018
- Liu, Y.S., Fu, H.L., Rao, J.Y., Dong, H. and Zhang, H.M. (2013), "Tensile strength of slate based on Hoek-Brown criterion", Chin. J. Rock Mech. Eng., 35, 1172-1177. (in Chinese)
- Liu, Y.S., Fu, H.L., Wu, Y.M., He, Y.W. and Dong, H. (2013), "Study on Brazilian splitting test for slate based on single weak plane theory", J. China Coal Soc., 38, 1775-1780. (in Chinese)
- Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037.
- Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
- Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002.
- Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions", Geosystem. Eng., 18, 1-28. https://doi.org/10.1080/12269328.2014.998346.
- Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489.
- Sarfarazi, V. and Haeri, H. (2016), "A review of experimental and numerical investigations about crack propagation", Comput. Concrete, 18(2), 235-266. http://dx.doi.org/10.12989/cac.2016.18.2.235.
- Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. http://dx.doi.org/10.12989/acc.2015.3.4.269
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2013), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.
- Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739.
- Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034.
- Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failureof layered sandstone under Braziliantest conditions", Int. J. Rock Mech. Min. Sci., 47, 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001.
- Tavallali, A. and Vervoort, A. (2013), "Behaviour of layered sandstone under Brazilian test conditions: Layer orientation and shape effects", J. Rock Mech. Geotech. Eng., 5, 366-377. https://doi.org/10.1016/j.jrmge.2013.01.004.
- Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015.
- Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on selfcompacting concrete containing coal bottom ash", Procedia- Soc. Behav. Sci., 198, 2280-2289. https://doi.org/10.1016/j.sbspro.2015.06.317.
- Wang, T., Xu, D., Elsworth, D. and Zhou, W. (2016c), "Distinct element modeling of strength variation in jointed rock masses under uniaxial compression", Geomech. Geophys. Geo-Energy Geo-Resour., 2, 11-24. https://doi.org/10.1007/s40948-015-0018-7.
- Wasantha, P., Ranjith, P., Zhang, Q. and Xu, T. (2015), "Do joint geometrical properties influence the fracturing behaviour of jointed rock? An investigation through joint orientation", Geomech. Geophys. Geo-Energy Geo-Resour., 1, 3-14. http://dx.doi.org/ 10.1007/s40948-015-0001-3.
- Wu, W., Wang, G.B. and Mao, H.J. (2010), "Investigation of porosity effect on mechanical strength characteristics of dolostone", Rock Soil Mech., 31, 3709-3714. https://doi.org/10.3969/j.issn.1000-7598.2010.12.003
- Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45, 711-737. https://doi.org/10.1007/s00603-011-0176-z.
- Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46, 1001-1021. https://doi.org/10.1007/s00603-012-0323-1.