DOI QR코드

DOI QR Code

Numerical simulations of fracture shear test in anisotropy rocks with bedding layers

  • Haeri, Hadi (State Key Laboratory for Deep GeoMechanics and Underground Engineering) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University) ;
  • Nejati, Hamid Reza (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
  • Received : 2018.10.31
  • Accepted : 2019.04.19
  • Published : 2019.06.25

Abstract

In this paper the effect of bedding layer on the failure mechanism of rock in direct shear test has been investigated using particle flow code, PFC. For this purpose, firstly calibration of pfc2d was performed using Brazilian tensile strength. Secondly direct shear test consisting bedding layer was simulated numerically. Thickness of layers was 10 mm and rock bridge length was 10 mm, 40 mm and 60 mm. In each rock bridge length, bedding layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Totally 21 models were simulated and tested. The results show that two types of cracks develop within the model. Shear cracks and tensile cracks. Also failure pattern is affected by bridge length while shear strength is controlled by failure pattern. It's to be noted that bedding layer has not any effect on the failure pattern because the layer interface strength is too high.

Keywords

References

  1. Bewick, R.P., Kaiser, P.K. and Bawden, W.F. (2013), "DEM simulation of direct shear: 2. Grain boundary and mineral grain strength component influence on shear rupture", Rock Mech. Rock Eng., 47(5), 1673-1692. https://doi.org/10.1007/s00603-013-0494-4.
  2. Bewick, R.P., Kaiser, P.K., Bawden, W.F. and Bahrani, N. (2013), "DEM simulation of direct shear: 1. Rupture under constant normal stress boundary conditions", Rock Mech. Rock Eng., 47(5), 1647-1671. https://doi.org/10.1007/s00603-013-0490-8.
  3. Cai, M. and Kaiser, P.K. (2004), "Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks", Int. J. Rock Mech. Min. Sci., 41, 478-483. https://doi.org/10.1016/j.ijrmms.2004.03.086
  4. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29, 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  5. Dan, D.Q., Konietzky, H. and Herbst, M. (2013), "Brazilian tensile strength tests on some anisotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7. https://doi.org/10.1016/j.ijrmms.2012.08.010.
  6. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solid., 22, 1205-1218. https://doi.org/10.1177/1081286515625436.
  7. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001.
  8. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45, 677- 693. https://doi.org/10.1007/s00603-012-0233-2.
  9. Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 124. https://doi.org/10.1007/s12517-015-2137-4.
  10. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723.
  11. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6.
  12. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinica., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.
  13. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939.
  14. Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016b), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinica., 5, 555-566. https://doi.org/10.1016/S0894-9166(16)30273-7.
  15. Itasca Consulting Group Inc. (2004), Particle Flow Code in 2-Dimensions, Problem Solving with PFC2D, Version 3.1, Itasca Consulting Group Inc., Minneapolis.
  16. Khanlari, G., Rafiei, B. and Abdilor, Y. (2014), "An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones", Rock Mech. Rock Eng., 48(2), 843-852. https://doi.org/10.1007/s00603-014-0576-y.
  17. Kim, J. and Taha, M.R. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civil Eng., 2014, Article ID 156926, 8. http://dx.doi.org/10.1155/2014/156926.
  18. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046.
  19. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measur., 82, 421-431. https://doi.org/10.1016/j.measurement.2017.04.002.
  20. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002.
  21. Liu, Y.S., Fu, H.L., Rao, J.Y., Dong, H. and Cao, Q. (2012), "Research on Brazilian discsplittingtestsfor anisotropyof slateunder influenceofdifferent bedding orientation", Chin. J. Rock Mech. Eng., 31, 785-791. (in Chinese) https://doi.org/10.3969/j.issn.1000-6915.2012.04.018
  22. Liu, Y.S., Fu, H.L., Rao, J.Y., Dong, H. and Zhang, H.M. (2013), "Tensile strength of slate based on Hoek-Brown criterion", Chin. J. Rock Mech. Eng., 35, 1172-1177. (in Chinese)
  23. Liu, Y.S., Fu, H.L., Wu, Y.M., He, Y.W. and Dong, H. (2013), "Study on Brazilian splitting test for slate based on single weak plane theory", J. China Coal Soc., 38, 1775-1780. (in Chinese)
  24. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037.
  25. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  26. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002.
  27. Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions", Geosystem. Eng., 18, 1-28. https://doi.org/10.1080/12269328.2014.998346.
  28. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489.
  29. Sarfarazi, V. and Haeri, H. (2016), "A review of experimental and numerical investigations about crack propagation", Comput. Concrete, 18(2), 235-266. http://dx.doi.org/10.12989/cac.2016.18.2.235.
  30. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. http://dx.doi.org/10.12989/acc.2015.3.4.269
  31. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2013), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.
  32. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739.
  33. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034.
  34. Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failureof layered sandstone under Braziliantest conditions", Int. J. Rock Mech. Min. Sci., 47, 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001.
  35. Tavallali, A. and Vervoort, A. (2013), "Behaviour of layered sandstone under Brazilian test conditions: Layer orientation and shape effects", J. Rock Mech. Geotech. Eng., 5, 366-377. https://doi.org/10.1016/j.jrmge.2013.01.004.
  36. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015.
  37. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on selfcompacting concrete containing coal bottom ash", Procedia- Soc. Behav. Sci., 198, 2280-2289. https://doi.org/10.1016/j.sbspro.2015.06.317.
  38. Wang, T., Xu, D., Elsworth, D. and Zhou, W. (2016c), "Distinct element modeling of strength variation in jointed rock masses under uniaxial compression", Geomech. Geophys. Geo-Energy Geo-Resour., 2, 11-24. https://doi.org/10.1007/s40948-015-0018-7.
  39. Wasantha, P., Ranjith, P., Zhang, Q. and Xu, T. (2015), "Do joint geometrical properties influence the fracturing behaviour of jointed rock? An investigation through joint orientation", Geomech. Geophys. Geo-Energy Geo-Resour., 1, 3-14. http://dx.doi.org/ 10.1007/s40948-015-0001-3.
  40. Wu, W., Wang, G.B. and Mao, H.J. (2010), "Investigation of porosity effect on mechanical strength characteristics of dolostone", Rock Soil Mech., 31, 3709-3714. https://doi.org/10.3969/j.issn.1000-7598.2010.12.003
  41. Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45, 711-737. https://doi.org/10.1007/s00603-011-0176-z.
  42. Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46, 1001-1021. https://doi.org/10.1007/s00603-012-0323-1.