DOI QR코드

DOI QR Code

Adsorption of Zinc Ion in Synthetic Wastewater by Ethylenediaminetetraacetic Acid-Modified Bentonite

에틸렌다이아민테트라아세트산으로 개질된 벤토나이트를 이용한 합성폐수 내 아연 이온 흡착

  • Jeong, Myung-Hwa (Department of Environmental Engineering, Kangwon National University) ;
  • Kwon, Dong-Hyun (Department of Environmental Engineering, Kangwon National University) ;
  • Lim, Yeon-Ju (Department of Environmental Engineering, Kangwon National University) ;
  • Ahn, Johng-Hwa (Department of Environmental Engineering, Kangwon National University)
  • Received : 2019.01.11
  • Accepted : 2019.03.18
  • Published : 2019.03.30

Abstract

Ethylenediaminetetraacetic acid-modified bentonite (EMB) was used for adsorption of zinc ion (Zn) from aqueous solution, compared with unmodified bentonite (UB). Parameters such as dose (0.750 ~ 3.125 g/L), mixing intensity (10 ~ 150 rpm), contact time (0.17 ~ 30 min), pH (2 ~ 7), and temperature (298 ~ 338 K), were studied. Zn removal efficiency for EMB was 20 ~ 30 % higher, than that for UB, in all experiments. Thermodynamic studies demonstrated that adsorption process was spontaneous with Gibb's free energy (${\Delta}G$) values, ranging between -5.211 and -7.175 kJ/mol for EMB, and -0.984 and -2.059 kJ/mol for UB, and endothermic with enthalpy (${\Delta}H$) value of 9.418 kJ/mol for EMB and 7.022 kJ/mol for UB. Adsorption kinetics was found to follow the pseudo-second order kinetics model, and its rate constant was 3.41 for EMB and $2.00g/mg{\cdot}min$ for UB. Adsorption equilibrium data for EMB were best represented by the Langmuir adsorption isotherm, and calculated maximum adsorption capacity was 2.768 mg/g. It was found that the best conditions for Zn removal of EMB within the range of operation used, were 3.125 g/L dose, 90 rpm intensity, 10 min contact time, pH 4, and 338 K. Therefore, EMB has good potential for adsorption of Zn.

Keywords

SJBJB8_2019_v35n2_123_f0001.png 이미지

Fig. 2. Effect of adsorbent dose on zinc ion removal for ethylenediaminetetraacetic acid-modified and unmo-dified bentonites.

SJBJB8_2019_v35n2_123_f0002.png 이미지

Fig. 3. Effect of (a) mixing intensity and (b) contact time on zinc ion removal for ethylenediaminetetraacetic acid-modified and unmodified bentonites.

SJBJB8_2019_v35n2_123_f0003.png 이미지

Fig. 4. Effect of pH on zinc ion removal for ethylenedi-aminetetraacetic acid-modified and unmodified bentonites.

SJBJB8_2019_v35n2_123_f0004.png 이미지

Fig. 5. Effect of temperature on zinc ion removal for ethylenediaminetetraacetic acid-modified and unmodified bentonites.

SJBJB8_2019_v35n2_123_f0005.png 이미지

Fig. 6. Langmuir and Freundlich isotherms of zinc ion removal for ethylenediaminetetraacetic acid-modified bentonite.

SJBJB8_2019_v35n2_123_f0006.png 이미지

Fig. 7. Pseudo-second order kinetics of zinc ion onto ethylenediaminetetraacetic-modified and unmodified bentonites.

SJBJB8_2019_v35n2_123_f0007.png 이미지

Fig. 1. (a) Images of field emission scanning electron microscope and (b) fourier transform infrared spectroscopy analysis of ethylenediaminetetraacetic acid-modified and unmodified bentonites.

Table 1. Equilibrium constants and thermodynamic parameters, in adsorption process for ethylenediaminetetraacetic-modified and unmodified bentonites

SJBJB8_2019_v35n2_123_t0001.png 이미지

References

  1. Akpomie, K. G., Dawodu, F. A., and Adebowale, K. O. (2015). Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential, Alexandria Engineering Journal, 54, 757-767. https://doi.org/10.1016/j.aej.2015.03.025
  2. American Public Health Association (APHA). (2012). Standard method for the examination of water and wastewater, 22th edition, American Public Health Association, American Water Works Association, and Water Environment Federation, Washington D, C. USA.
  3. Aoudj, S., Khelifa, A., Zemmouri, H., Hamadas, I., Yatoui, S., Zabchi, N., and Drouiche, N. (2018). Degradation of EDTA in $H_2O_2$-containing wastewater by photo-electrochemical peroxidation, Chemosphere, 208, 984-990. https://doi.org/10.1016/j.chemosphere.2018.06.053
  4. Bae, W. B., Park, G. R., and Jung, D. Y. (2018). Adsorption characteristics of zinc ion in synthetic wastewater by carbonaceous material prepared from oriental cherry, Journal of Korea Society of Waste Management, 35(3), 236-242. [Korean Literature] https://doi.org/10.9786/kswm.2018.35.3.236
  5. Choi, D. H., Son, H. J., Park, J. S., Moon, C. Y., Ryu, D. C., Jang, S. H., Kwon, K. W., and Kim, H. S. (2013). Adsorption efficiency of coal based GACs and evaluation of economic efficiency, Journal of Environmental Science International, 22(2), 205-213. https://doi.org/10.5322/JESI.2013.22.2.205
  6. De Castro, M. L. F. A., Abad, M. L. B., Sumalinog, D. A. G., Abarca, R. R. M., Paoprasert, P., and de Luna, M. D. G. (2018). Adsorption of methylene blue dye and Cu(II) ions on EDTA-modified bentonite: Isotherm, kinetic and thermodynamic studies, Sustainable Environment Research, 28, 197-205. https://doi.org/10.1016/j.serj.2018.04.001
  7. Freundlich, H. M. F. (1906). Over the adsorption in solution, The Journal of Physical Chemistry, 57, 385-470.
  8. Freundlich, H. M. F. (1922). Colloid and capillary chemistry, E. P. Dutton and Co. New York
  9. Ho, Y. S. and Mckay, G. (1999). Pseudo-second order model for sorption processes, Process Biochemistry, 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  10. Hwang, M. J., Hwang, Y. S., and Lee, W. T. (2015). Phosphate adsorption on metal-impregnated activated carbon, Journal of Korean Society of Environmental Engineers, 37(11), 642-648. [Korean Literature] https://doi.org/10.4491/KSEE.2015.37.11.642
  11. Kaya, A., and Oren, A. H. (2005). Adsorption of zinc from aqueous solutions to bentonite, Journal of Hazardous Materials, 125, 183-189. https://doi.org/10.1016/j.jhazmat.2005.05.027
  12. Kim, M. N., Kim, W. G., Lee, S., M., and Yang, J. K. (2009). Removal of Cu(II) with the recycled hydroxylapatite from animal bones, Journal of Korean Society of Environmental Engineers, 735-742. [Korean Literature] https://doi.org/10.4491/KSEE.2012.34.11.735
  13. Langmuir, I. (1918). The adsorption of gases on plane surface of glass, mica and platinum, Journey of the America Chemical Society, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
  14. Lee, S. H., Kim, C. K., Park, J. G., Choi. D. K., and Ahn. J. H. (2017). Comparison of steel slag and activated carbon for phosphate removal from aqueous solution by adsorption, Journal of Korean Society of Environmental Engineers, 39(5), 303-309. [Korean Literature] https://doi.org/10.4491/KSEE.2017.39.5.303
  15. Lee, S. M., Kim, C. W., and Paik, D. H. (2015). Evaluation of phosphorus adsorption characteristic with surface modified activated carbon, Journal of the Korean Society of Urban Environment, 15(3), 189-197. [Korean Literature]
  16. Moon, J. H., Kim, T. J., Choi, C. H., and Kim, C. G. (2006). Adsorption characteristics of heavy metals on clay minerals, Journal of Korean Society of Environmental Engineers, 28(7), 704-712. [Korean Literature]
  17. Na, C. K., Han, M. Y., and Park, H. J. (2011). Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents (1), Journal of Korean Society of Environmental Engineers, 33(8), 606-616. [Korean Literature] https://doi.org/10.4491/KSEE.2011.33.8.606
  18. Nathaniel, E., Kurniawan, A., Soeteredjo, F. E., and Ismadji, S. (2011). Organo-bentonite for the adsorption of Pb(II) from aqueous solution: Temperature dependent parameters of several adsorption equations, Desalination and Water Treatment, 36, 280-288. https://doi.org/10.5004/dwt.2011.2572
  19. Navarro, V., Yustres, A., Asensio, L., la Morena, G. D., Gonzalez-Arteaga, J., Laurila, T., and Pintado, X. (2017). Modelling of compacted bentonite swelling accounting for salinity effects, Engineering Geology, 223, 48-58. https://doi.org/10.1016/j.enggeo.2017.04.016
  20. Nemeth, G., Mlinarik, L., and Torok, A. (2016). Adsorption and chemical precipitation of lead and zinc from contaminated solutions in porous rocks, Possible application in environmental protection, Journal of African Earth Sciences, 122, 98-106. https://doi.org/10.1016/j.jafrearsci.2016.04.022
  21. Rao, M. M., Ramesh, A., Rao, G. P. C., and Seshaiah, K. (2006). Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls, Journal of Hazardous Materials, 129(1-3), 123-129. https://doi.org/10.1016/j.jhazmat.2005.08.018
  22. Rao, M. M., Rao, G. P. C., Seshaiah, K., Choudary, N. V., and Wang, M. C. (2008). Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions, Waste Management, 28(5), 849-858. https://doi.org/10.1016/j.wasman.2007.01.017
  23. Salih, S. S. and Ghosh, T. K (2018). Adsorption of Zn(II) ions by chitosan coated diatomaceous earth, International Journal of Biological Macromolecules, 106, 602-610. https://doi.org/10.1016/j.ijbiomac.2017.08.053
  24. Sahin, O., Kaya, M., and Saka, C. (2015). Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue, Applied Clay Science, 116-117, 46-53. https://doi.org/10.1016/j.clay.2015.08.015
  25. Sen, T. K. and Gomez, D. (2011). Adsorption of zinc from aqueous solution on natural bentonite, Desalination, 267, 286-294. https://doi.org/10.1016/j.desal.2010.09.041
  26. Simonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chemical Engineering Journal, 300(15), 254-263. https://doi.org/10.1016/j.cej.2016.04.079
  27. Tahir, S. S. and Rauf, N. (2006). Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, Chemosphere, 63(11), 1842-1848. https://doi.org/10.1016/j.chemosphere.2005.10.033
  28. Tohdee, K., Kaewsichan, L., and Asadullah. (2018). Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite, Journal of Environmental Chemical Engineering, 6(2), 2821-2828. https://doi.org/10.1016/j.jece.2018.04.030
  29. Treybal. R. E. (1981). Mass-Transfer Operations, 3rd (ed.) McGraw Hill, New York.
  30. Van der Waals, J. D. (1873). Over de constinuiteit van den gasen vloeistoftoestand, Ph. D. Dissertation, Leiden University, Netherlands.
  31. Van't Hoff, J. H. (1884). Etudes de dynamique chimique, Frederik Muller & Co., Amsterdam.
  32. Weber, J. W. (1972). Physicochemical processes for water quality control, John Wiley & Sons, Inc., New York, 199-259.