DOI QR코드

DOI QR Code

A Study on the Estimating the Ultra-High Strength Concrete using Rock Test Hammer

Rock Test Hammer를 사용한 초고강도 콘크리트 강도추정에 관한 기초적 연구

  • Received : 2019.04.17
  • Accepted : 2019.05.24
  • Published : 2019.06.20

Abstract

This study examines the estimation of strength through a ultra-high strength concrete mock-up specimen using the rock compressive strength test hammer. According to the test result, the commonly used strength estimation formulae showed differences among them when the data of this test were applied. In additional, it show that these formulae underestimated the actual measurements further when the compressive strength was 30MPa or greater and deviated the distribution range of actual measurements in all strength ranges. The rock test hammer showed a higher correlation than type N Schmidt hammer regardless of the direction of hit for each type of W/B and the inclusion of coarse aggregate, and mortar showed a little higher correlation than concrete. As a result, it can be suggested that the coefficient of variation and the standard deviation of the mortar(2.26%/1.36) are lower than those of the concrete(4.06%/2.5), and the smaller the size of the coarse aggregate, the smaller the coefficient of variation and the more accurate the value.

본 논문은 암반용 압축강도테스트 해머를 이용하여 초고강도 콘크리트 모의부재 압축강도 실험을 통한 강도추정에 대해서 검토하고자 하였다. 실험결과에 따르면, 본 실험 데이터값을 토대로 기존에 주로 사용되던 강도 추정식을 적용할 경우 각 식마다 차이가 있는 것으로 나타났다. 또한 압축강도 30MPa 이상으로 갈수록 실측 데이터를 과소평가하고 있는 것으로 나타났으며, 모든 강도 영역에서 실측치의 분포범위를 크게 벗어나고 있는 것으로 나타났다. W/B 종류별 타격방향 및 굵은 골재 유무와 상관없이 암반용 테스트 해머가 N형 슈미트 해머보다 높은 상관관계를 나타내었으며, 모르타르가 콘크리트보다 좀 더 높은 상관관계를 나타내었다. 그리고 굵은 골재 유 무에 따른 모의부재 반발도 측정결과 모르타르(2.26%/1.36)의 변동계수와 표준편차가 콘크리트(4.06%/2.5)보다 낮게 나타났으며, 굵은 골재의 치수가 작을수록 변동계수가 작아져 보다 정확한 값을 나타내는 것을 알 수 있다.

Keywords

GCSGBX_2019_v19n3_229_f0001.png 이미지

Figure 1. N type schmidt hammer plunger

GCSGBX_2019_v19n3_229_f0002.png 이미지

Figure 2. Rock test hammer attachment

GCSGBX_2019_v19n3_229_f0003.png 이미지

Figure 3. Mass type member

GCSGBX_2019_v19n3_229_f0004.png 이미지

Figure 4. Mass type member concrete placing

GCSGBX_2019_v19n3_229_f0005.png 이미지

Figure 5. Rebound value test

GCSGBX_2019_v19n3_229_f0006.png 이미지

Figure 6. Member core collection

GCSGBX_2019_v19n3_229_f0007.png 이미지

Figure 7. Compressive strength result

GCSGBX_2019_v19n3_229_f0008.png 이미지

Figure 8. Rock test hammer rebound value(Concrete)

GCSGBX_2019_v19n3_229_f0009.png 이미지

Figure 9. Rock test hammer rebound value(Mortar)

GCSGBX_2019_v19n3_229_f0010.png 이미지

Figure 10. N type Schmidt hammer rebound value(Concrete)

GCSGBX_2019_v19n3_229_f0011.png 이미지

Figure 11. N type schmidt hammer rebound value(Mortar)

GCSGBX_2019_v19n3_229_f0012.png 이미지

Figure 12. Estimate compressive strength and core compressive strength(0°)

GCSGBX_2019_v19n3_229_f0013.png 이미지

Figure 13. Estimate compressive strength and core compressive strength(90°)

GCSGBX_2019_v19n3_229_f0014.png 이미지

Figure 14. 50∼150MPa rock test hammer rebound value

GCSGBX_2019_v19n3_229_f0015.png 이미지

Figure 15. Comparison of estimate compressive strength and core compressive strength at 50∼150MPa

GCSGBX_2019_v19n3_229_f0016.png 이미지

Figure 16. Rebound value according to coarse aggregate size

GCSGBX_2019_v19n3_229_f0017.png 이미지

Figure 17. Correlation according to coarse aggregate size

Table 1. Experimental plan

GCSGBX_2019_v19n3_229_t0001.png 이미지

Table 2. Table of mix proportion

GCSGBX_2019_v19n3_229_t0002.png 이미지

Table 3. Physical properties and chemical composition of cement

GCSGBX_2019_v19n3_229_t0003.png 이미지

Table 4. Physical properties of fine aggregate and coarse aggregate

GCSGBX_2019_v19n3_229_t0004.png 이미지

Table 5. Physical properties of AE water reducing agent

GCSGBX_2019_v19n3_229_t0005.png 이미지

Table 6. Rebound value and compressive strength

GCSGBX_2019_v19n3_229_t0006.png 이미지

References

  1. Lee KB, Kim SD, Baek MS, Jung SJ. A study on the mechanical properties of ultra high-strength concrete according to the concurrent placement of vertical and horizontal members. Journal of the Architectural Institute of Korea Structure & Construction. 2011 Aug;27(8):105-12.
  2. Kim MH, Han CG, Song HY, Kim JM, Kim GY, Choi HY. A study on the economical development and practical use of high strength concrete. Journal of the Architectural Institute of Korea Structure & Construction. 1996 Jul;12(7):313-24.
  3. Yoon JK, Jo BS, Lee JH, Jang JH, Choi SJ, Kim MH. A study on the proposal of strength presumption equation and evaluation of practical application of high strength concrete. Proceeding of the Architecture Institute of Korea Autumn Conference;2002 Oct 26; Gunsan(Korea): Journal of the Architectural Institute of Korea, 2002 Oct;22(2):359-62.
  4. Chung IY. Studies on the adequate method of non-destructive testing of concrete. Journal of the Architectural Institute of Korea Structure & Construction. 1993 Aug;9(8):169-74.
  5. Lee SY. A study on the core strength of existing concrete structures [master's thesis]. [Incheon]: University of Incheon; 2003. p. 98.
  6. Seo YA, Lim NG, Jung SJ, Park SH. A study on sectional strength estimation of the high strength concrete by using rock test hammer. Journal of the Architectural Institute of Korea Structure & Construction. 2012 Nov;28(11):207-14. https://doi.org/10.5659/JAIK_SC.2012.28.11.207
  7. Park SH, Ha JS, Lim SD, Nam KY, Chung L. Study on the strength estimation of ultra-high strength concrete using rebound hardness method. Journal of the Architectural Institute of Korea Structure & Construction. 2014 Dec;30(12):69-76. https://doi.org/10.5659/JAIK_SC.2014.30.12.69
  8. Brown ET, International Society for Rock Mechanics(Commission on Testing Methods). Rock Characterization Testing & Monitoring: ISRM Suggested Methods. International Society for Rock Mechanics by Pergamon Press. 1981. p.101-2.