DOI QR코드

DOI QR Code

Phytoplasma Infection could Affect Chemical Composition of Artemisia sieberi

  • Hemmati, Chamran (Department of Agriculture, Minab Higher Education Center, University of Hormozgan) ;
  • Nikooei, Mehrnoosh (Department of Agriculture, Minab Higher Education Center, University of Hormozgan)
  • Received : 2019.01.03
  • Accepted : 2019.03.11
  • Published : 2019.06.01

Abstract

Artemisia sieberi showing symptoms resembling those caused by phytoplasma were observed in Geno Mountain, Hormozgan Province, Iran, and were examined for phytoplasma presence by PCR assays. In addition, the essential oils hydrodistilled from the aerial parts of phytoplasma-infected and healthy plants have been analyzed and compared by GC and GC/MS. Phylogenetic and virtual RFLP analysis of the 16S rRNA gene sequences revealed that the phytoplasma associated with A. sieberi witches' broom (AsWB) was a strain of 'Candidatus Phytoplasma aurantifolia'. The presence of the disease, however, induced a further enrichment (from 4.9 to 45.2%, a relative increase of 90%) of the entire monoterpene class as compared to the abundance in healthy samples. Conversely, a matching decrease in monoterpenoid (from 48.7 to 2%, a relative decrease of 90.2%) was observed in the infected plants. Besides the first report of phytoplasma infection of A. sieberi, the changes of its essential oils are reported.

Keywords

E1PPBG_2019_v35n3_274_f0001.png 이미지

Fig. 1. Symptoms of witches’ broom and little leaf (A) in comparison with healthy Artemisia sieberi (B).

E1PPBG_2019_v35n3_274_f0002.png 이미지

Fig. 2. Phylogenetic tree of partial 16S rDNA gene sequence from Artemisia sieberi witches’ broom phytoplasma isolates (marked in bold) and selected phytoplasma reference sequences. GenBank accession numbers are shown in brackets, and 16Sr groups are annotated to the right. Acholeplasma laidlawii was used as outgroup to root the tree. The tree was constructed by the neighbor-joining method using MEGA 6 software. The bar indicates the number of nucleotides substitution per site. Bootstrap values are shown at nodes with greater than 50% support.

Table 1. Quantitative analysis of essential oil of 5 healthy and 5 phytoplasma-infected A. sieberi plants

E1PPBG_2019_v35n3_274_t0001.png 이미지

References

  1. Adams, R. P. 2007. Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed. Allured Publishing Corporation, Carol Stream, IL, USA. 804 pp.
  2. Bellardi, M. G., Contaldo, N., Benni, A., Curini, M., Epifano, F., Genovese, S. and Bertaccini, A. 2009. Effects of phytoplasma infection on the quality of Grindelia robusta essential oil. J. Plant Pathol. 91:240.
  3. Bertaccini, A., Duduk, B., Paltrinieri, S. and Contaldo, N. 2014. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am. J. Plant Sci. 5:1763-1788. https://doi.org/10.4236/ajps.2014.512191
  4. Bora, K. S. and Sharma, A. 2011. The genus Artemisia: a comprehensive review. Pharm. Biol. 49:101-109. https://doi.org/10.3109/13880209.2010.497815
  5. Bruni, R., Pellati, F., Bellardi, M. G., Benvenuti, S., Paltrinieri, S., Bertaccini, A. and Bianchi, A. 2005. Herbal drug quality and phytochemical composition of Hypericum perforatum L. affected by ash yellows phytoplasma infection. J. Agric. Food Chem. 53:964-968. https://doi.org/10.1021/jf0487654
  6. Deng, S. and Hiruki, C. 1991. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. J. Microbiol. Methods 14:53-61. https://doi.org/10.1016/0167-7012(91)90007-D
  7. Favali, M. A., Musetti, R., Benvenuti, S., Bianchi, A. and Pressacco, L. 2004. Catharanthus roseus L. plants and explants infected with phytoplasmas: alkaloid production and structural observations. Protoplasma 223:45-51. https://doi.org/10.1007/s00709-003-0024-4
  8. Gundersen, D. E. and Lee, I. M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 35:144-151.
  9. Hemmati, C. and Nikooei, M. 2017. Molecular characterization of a Candidatus Phytoplasma aurantifolia-related strain associated with Zinnia elegans phyllody disease in Iran. Aust. Plant Dis. Notes 12:11. https://doi.org/10.1007/s13314-017-0234-9
  10. Hemmati, C., Nikooei, M. and Pasalari, H. 2018. Cota tinctoria and Orosius albicinctus: A new plant host and potential insect vector of 'Candidatus Phytoplasma trifolii'. Aust. Plant Dis. Notes 13:13. https://doi.org/10.1007/s13314-018-0298-1
  11. Mahboubi, M., Valian, M. and Kazempour, N. 2015. Chemical composition, antioxidant and antimicrobial activity of Artemisia sieberi oils from different parts of Iran and France. J. Essent. Oil Res. 27:140-147. https://doi.org/10.1080/10412905.2014.1001526
  12. Marco, J. A., Sanz-Cervera, J. F., Sancenon, F., Jakupovic, J., Rustaiyant, A. and Mohamadit, F. 1993. Oplopanone derivatives monoterpene glycosides from Artemisia sieberi. Phytochemistry 34:1061-1065. https://doi.org/10.1016/S0031-9422(00)90714-3
  13. Marcone, C., Bellardi, M. G. and Bertaccini, A. 2016. Phytoplasma diseases of medicinal and aromatic plants. J. Plant Pathol. 98:379-404.
  14. Mayer, C. J., Vilcinskas, A. and Gross, J. 2008. Phytopathogen lures its insect vector by altering host plant odor. J. Chemic. Ecol. 34:1045-1049. https://doi.org/10.1007/s10886-008-9516-1
  15. Meneguzzi, N. G., Torres, L. E., Galdeano, E., Guzman, F. A., Nome, S. F. and Conci, L. 2008. Molecular characterization of a phytoplasma of the ash yellows group (16Sr VII-B) occurring in Artemisia annua and Conyza bonariensis weeds. AgriScientia 21:7-15.
  16. Mohamed, M. H., Harris, P. J., Henderson, J. and Senatore, F. 2002. Effect of drought stress on the yield and composition of volatile oils of drought-tolerant and non-drought-tolerant clones of Tagetes minuta. Planta Med. 68:472-474. https://doi.org/10.1055/s-2002-32072
  17. Mori, N., Quaglino, F., Tessari, F., Pozzebon, A., Bulgari, D., Casati, P. and Bianco, P. A. 2015. Investigation on 'bois noir' epidemiology in north-eastern Italian vineyards through a multidisciplinary approach. Ann. Appl. Biol. 166:75-89. https://doi.org/10.1111/aab.12165
  18. Negahban, M., Moharramipour, S. and Sefidkon, F. 2006. Insecticidal activity and chemical composition of Artemisia sieberi Besser essential oil from Karaj, Iran. J. Asia-Pacific Entomol. 9:61-66. https://doi.org/10.1016/S1226-8615(08)60276-9
  19. Pandey, A. K. and Singh, P. 2017. The genus Artemisia: A 2012-2017 literature review on chemical composition, antimicrobial, insecticidal and antioxidant activities of essential oils. Medicines 4:E68. https://doi.org/10.3390/medicines4030068
  20. Pandey, A. K. and Tripathi, N. N. 2011. Aromatic plants of gorakhpur division: Their antimycotic properties and medicinal value. Int. J. Pharm. Sci. Rev. Res. 7:142-147.
  21. Perry, N. B., Anderson, R. E., Brennan, N. J., Douglas, M. H., Heaney, A. J., McGimpsey, J. A. and Smallfield, B. M. 1999. Essential oils from Dalmatian sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. J. Agric. Food Chem. 47:2048-2054. https://doi.org/10.1021/jf981170m
  22. Rid, M., Mesca, C., Ayasse, M. and Gross, J. 2016. Apple proliferation phytoplasma influences the pattern of plant volatiles emitted depending on pathogen virulence. Front. Ecol. Evol. 3:152.
  23. Sahu, S. K., Thangaraj, M. and Kathiresan, K. 2012. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Mol. Biol. 2012:205049.
  24. Schneider, B., Cousin, M. T., Klinkong, S. and Seemuller, E. 1995. Taxonomic relatedness and phylogenetic positions of phytoplasmas associated with diseases of faba bean, sunnhemp, sesame, soybean, and eggplant. J. Plant Dis. Protect. 102:225-232.
  25. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  26. Yu, X. M., Ai, C. X., Wang, J., Fu, L., An, M., Wang, H. R. and Sun, Q. R. 2016. First report of a 16SrXII-A subgroup phytoplasma associated with Artemisia scoparia witches'-broom disease in China. Plant Dis. 100:1494.
  27. Zhao, Y., Wei, W., Lee, I.-M., Shao, J., Suo, X. and Davis, R. E. 2009. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int. J. Syst. Evol. Microbiol. 59:2582-2593. https://doi.org/10.1099/ijs.0.010249-0