DOI QR코드

DOI QR Code

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment

  • Akamatsu, Hajime (Division of Lowland Farming, Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization) ;
  • Kato, Masayasu (Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences) ;
  • Ochi, Sunao (Division of Plant Disease Management, Central Region Agricultural Research Center, National Agriculture and Food Research Organization) ;
  • Mimuro, Genki (Division of Plant Disease Management, Central Region Agricultural Research Center, National Agriculture and Food Research Organization) ;
  • Matsuoka, Jun-ichi (Division of Lowland Farming, Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization) ;
  • Takahashi, Mami (Division of Lowland Farming, Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization)
  • 투고 : 2018.11.10
  • 심사 : 2019.04.07
  • 발행 : 2019.06.01

초록

Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.

키워드

E1PPBG_2019_v35n3_219_f0001.png 이미지

Fig. 1. Soybean plants inoculated with Phytophthora sojae cultured on V8 juice agar medium (P. sojae–V8 culture flooding method). The photo shows ‘Nattosyoryu’ plants inoculated with Ps060626-4-1 isolate (the three pots in the front row) and treated with V8 agar as a control (the three pots in the back row).

E1PPBG_2019_v35n3_219_f0002.png 이미지

Fig. 2. Temporal changes in the rates of dead soybean plants (%) following Phytophthora sojae inoculations of plants at different ages. Plants were inoculated with P. sojae isolate 13-B-RO-1 at 16-40 days after seeding. Mean values ± standard errors for three inoculated pots are plotted in two graphs (top: ‘Himeshirazu’; bottom: ‘Nattosyoryu’). Mean values with the same letters in each graph are not significantly different according to Tukey’s honestly significant difference test (p < 0.05).

E1PPBG_2019_v35n3_219_f0003.png 이미지

Fig. 3. Comparison of the resistance to Phytophthora root and stem rot among 20 soybean cultivars at different plant ages. Soybean plants were grown for 14, 21, or 28 days and then inoculated with one of 17 Phytophthora sojae isolates. The boxplots were drawn based on the rates of dead plants (%) for the inoculation of plants grown for 14 days (A), 21 days (B), or 28 days (C). The open diamond in the plots indicates the average rate of dead plants for each cultivar. The mean values for each growth period were analyzed with Tukey’s honestly significant difference test. The same letters in boxplots indicate the mean values are not significantly different among the three growth periods (p < 0.01).

E1PPBG_2019_v35n3_219_f0004.png 이미지

Fig. 4. Effects of a seed treatment with pesticides on the development of Phytophthora root and stem rot. ‘Nattosyoryu’ seeds treated with one of three pesticides containing fungicidal ingredients were sown, and plants grown for specific periods (14-40 days) were inoculated with Phytophthora sojae isolate 13-B-RO-1. The graph represents a plot of the mean rates of dead plants ± standard errors (%) for plants derived from pesticide-treated seeds (white square: amisulbrom; black circle: thiamethoxam, fludioxonil, and metalaxyl-M; grey triangle: cyazofamid) and non-treated controls (white circle). The mean values were significantly different between pesticide-treated samples and non-treated controls following inoculations at 14, 16, 20, 24, and 28 days after seeding according to Dunnett’s multiple comparisons test (p < 0.001).

E1PPBG_2019_v35n3_219_f0005.png 이미지

Fig. 5. Effect of a seed treatment with pesticides on the inoculation with different Phytophthora sojae isolates. ‘Nattosyoryu’ seeds were treated with thiamethoxam, fludioxonil, and metalaxyl-M (A), or cyazofamid (B), and plants grown for 14 days after sown were inoculated with P. sojae isolates. The boxplots were drawn based on the rates of dead plants (%) caused by the inoculation. The open diamond in the plots indicates the average rate of dead plants for each treatment.

Table 1. Phytophthora sojae isolates used in this study

E1PPBG_2019_v35n3_219_t0004.png 이미지

Table 2. Soybean cultivars used in this study and their planted area in Japan in 2012-2015a

E1PPBG_2019_v35n3_219_t0005.png 이미지

Table 3. Pesticides used in this study

E1PPBG_2019_v35n3_219_t0006.png 이미지

참고문헌

  1. Abeysekara, N. S., Matthiesen, R. L., Cianzio, S. R., Bhattacharyya, M. K. and Robertson, A. E. 2016. Novel sources of partial resistance against Phytophthora sojae in soybean PI 399036. Crop Sci. 56:2322-2335. https://doi.org/10.2135/cropsci2015.09.0578
  2. Anderson, T. R. and Buzzell, R. I. 1982. Efficacy of metalaxyl in controlling Phytophthora root and stalk rot of soybean cultivars differing in field tolerance. Plant Dis. 66:1144-1145. https://doi.org/10.1094/PD-66-1144
  3. Anderson, T. R. and Buzzell, R. I. 1992. Inheritance and linkage of the Rps7 gene for resistance to Phytophthora rot of soybean. Plant Dis. 76:958-959. https://doi.org/10.1094/PD-76-0958
  4. Athow, K. L., Laviolette, F. A., Mueller, E. H. and Wilcox, J. R. 1980. A new major gene for resistance to Phytophthora megasperma var. sojae in soybean. Phytopathology 70:977-980. https://doi.org/10.1094/Phyto-70-977
  5. Bienapfl, J. C., Malvick, D. K. and Percich, J. A. 2011. Specific molecular detection of Phytophthora sojae using conventional and real-time PCR. Fungal Biol. 115:733-740. https://doi.org/10.1016/j.funbio.2011.05.007
  6. Burnham, K. D., Dorrance, A. E., VanToai, T. T. and St. Martin, S. K. 2003. Quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Crop Sci. 43:1610-1617. https://doi.org/10.2135/cropsci2003.1610
  7. Cameron, J. N. and Carlile, M. J. 1977. Negative geotaxis of zoospores of the fungus Phytophthora. J. Gen. Microbiol. 98:599-602. https://doi.org/10.1099/00221287-98-2-599
  8. Chen, H. 2018. The spatial patterns in long-term temporal trends of three major crops' yields in Japan. Plant Prod. Sci. 21:177-185. https://doi.org/10.1080/1343943X.2018.1459752
  9. Develey-Riviere, M. P. and Galiana, E. 2007. Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol. 175:405-416. https://doi.org/10.1111/j.1469-8137.2007.02130.x
  10. Dorrance, A. E. 2018. Management of Phytophthora sojae of soybean: a review and future perspectives. Can. J. Plant Pathol. 40:210-219. https://doi.org/10.1080/07060661.2018.1445127
  11. Dorrance, A. E. and Schmitthenner, A. F. 2000. New sources of resistance to Phytophthora sojae in the soybean plant introductions. Plant Dis. 84:1303-1308. https://doi.org/10.1094/PDIS.2000.84.12.1303
  12. Dorrance, A. E. and McClure, S. A. 2001. Beneficial effects of fungicide seed treatment for soybean cultivars with partial resistance to Phytophthora sojae. Plant Dis. 85:1063-1068. https://doi.org/10.1094/PDIS.2001.85.10.1063
  13. Dorrance, A. E., Berry, S. A., Bowen, P. and Lipps, P. E. 2004a. Characterization of Pythium spp. from three Ohio fields for pathogenicity on corn and soybean and metalaxyl sensitivity. Plant Health Prog. doi: 10.1094/PHP-2004-0202-01-RS.
  14. Dorrance, A. E., Jia, H. and Abney, T. S. 2004b. Evaluation of soybean differentials for their interaction with Phytophthora sojae. Plant Health Prog. doi: 10.1094/PHP-2004-0309-01-RS.
  15. Dorrance, A. E., Mills, D., Robertson, A. E., Draper, M. A., Giesler, L. and Tenuta, A. 2007. Phytophthora root and stem rot of soybean. Plant Health Instr. doi: 10.1094/PHI-I-2007-0830-07.
  16. Dorrance, A. E., Berry, S. A., Anderson, T. R. and Meharg, C. 2008. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Prog. doi: 10.1094/PHP-2008-0118-01-DG.
  17. Dorrance, A. E., Robertson, A. E., Cianzo, S., Giesler, L. J., Grau, C. R., Draper, M. A., Tenuta, A. U. and Anderson, T. R. 2009. Integrated management strategies for Phytophthora sojae combining host resistance and seed treatments. Plant Dis. 93:875-882. https://doi.org/10.1094/PDIS-93-9-0875
  18. Esker, P. D. and Conley, S. P. 2012. Probability of yield response and breaking even for soybean seed treatments. Crop Sci. 52:351-359. https://doi.org/10.2135/cropsci2011.06.0311
  19. FAOSTAT. 2016. FAOSTAT statistical databases. Food and Agriculture Organization of the United Nations, Rome. URL http://www.fao.org/faostat/en/#data/QC [26 June 2018].
  20. Fehr, W. R., Cianzio, S. R., Voss, B. K. and Schultz, S. P. 1989. Registration of "Conrad" soybean. Crop Sci. 29:830. https://doi.org/10.2135/cropsci1989.0011183X002900030068x
  21. Forster, H., Coffey, M. D., Elwood, H. and Sogin, M. L. 1990. Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82:306-312. https://doi.org/10.1080/00275514.1990.12025885
  22. Fungicide Resistance Action Committee. 2018. FRAC Code List 2018: fungicides sorted by mode of action (including FRAC Code numbering). URL http://www.phi-base.org/images/frac-CodeList.pdf [14 May 2019].
  23. Grau, C. R., Dorrance, A. E., Bond, J. and Russin, J. S. 2004. Fungal diseases. In: Soybeans: improvement, production, and uses, eds. by H. R. Boerma and J. E. Specht, pp. 679-764. American Society of Agronomy, Madison, WI, USA.
  24. Guerin, V., Lebreton, A., Cogliati, E. E., Hartley, S. E., Belzile, F., Menzies, J. G. and Belanger, R. R. 2014. A zoospore inoculation method with Phytophthora sojae to assess the prophylactic role of silicon on soybean cultivars. Plant Dis. 98:1632-1638. https://doi.org/10.1094/PDIS-01-14-0102-RE
  25. Guy, S. O., Oplinger, E. S. and Grau, C. R. 1989. Soybean cultivar response to metalaxyl applied in furrow and as a seed treatment. Agron. J. 81:529-532. https://doi.org/10.2134/agronj1989.00021962008100030027x
  26. Han, Q., Zhao, H., Huang, L., Buchenauer, H., Zuo, Y. and Kang, Z. 2011. Light and electron microscopy studies on the infection of a wild-type and metalaxyl-resistant isolate of Phytophthora sojae in soybean hypocotyls. J. Phytopathol. 159:368-376. https://doi.org/10.1111/j.1439-0434.2010.01777.x
  27. Hansen, E. M. and Maxwell, D. P. 1991. Species of the Phytophthora megasperma complex. Mycologia 83:376-381. https://doi.org/10.1080/00275514.1991.12026023
  28. Harper, J. T., Waanders, E. and Keeling, P. J. 2005. On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int. J. Syst. Evol. Microbiol. 55:487-496. https://doi.org/10.1099/ijs.0.63216-0
  29. Hartman, G. L., West, E. D. and Herman, T. K. 2011. Crops that feed the world 2. soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Sec. 3:5-17. https://doi.org/10.1007/s12571-010-0108-x
  30. Hirooka, T. and Ishii, H. 2013. Chemical control of plant diseases. J. Gen. Plant Pathol. 79:390-401. https://doi.org/10.1007/s10327-013-0470-6
  31. Honda, T., Hasunuma, N. and Nishioka, M. 2007. Amisulbrom (NC-224): performance of new fungicide for potato late blight control. In: Proceedings of the tenth workshop of an European network for development of an integrated control strategy of potato late blight, ed. by H. T. A. M. Schepers, pp. 59-65. Bologna, Italy.
  32. Hunger, R. M., Hamm, P. B., Horner, C. E. and Hansen, E. M. 1982. Tolerance of Phytophthora megasperma isolates to metalaxyl. Plant Dis. 66:645-649. https://doi.org/10.1094/PD-66-645
  33. Jia, H. and Kurle, J. E. 2008. Resistance and partial resistance to Phytophthora sojae in early maturity group soybean plant introductions. Euphytica 159:27-34. https://doi.org/10.1007/s10681-007-9453-z
  34. Jiang, C. J., Sugano, S., Kaga, A., Lee, S. S., Sugimoto, T., Takahashi, M. and Ishimoto, M. 2017. Evaluation of resistance to Phytophthora sojae in soybean mini core collections using an improved assay system. Phytopathology 107:216-223. https://doi.org/10.1094/PHYTO-06-16-0233-R
  35. Jimenez, B. and Lockwood, J. L. 1980. Laboratory method for assessing field tolerance of soybean seedlings to Phytophthora megasperma var. sojae. Plant Dis. 64:775-778. https://doi.org/10.1094/PD-64-775
  36. Kato, M., Minamida, K., Tojo, M., Kokuryu, T., Hamaguchi, H. and Shimada, S. 2013. Association of Pythium and Phytophthora with pre-emergence seedling damping-off of soybean grown in a field converted from a paddy field in Japan. Plant Prod. Sci. 16:95-104. https://doi.org/10.1626/pps.16.95
  37. Kaufmann, M. J. and Gerdemann, J. W. 1958. Root and stem rot of soybean caused by Phytophthora sojae n. sp. Phytopathology 48:201-208.
  38. Lazarovits, G., Stossel, R. and Ward, E. W. B. 1981. Age-related changes in specificity and glyceollin production in the hypocotyl reaction of soybeans to Phytophthora megasperma var. sojae. Phytopathology 71:94-97. https://doi.org/10.1094/Phyto-71-94
  39. Lee, S., Rouf Mian, M. A., McHale, L. K., Sneller, C. H. and Dorrance, A. E. 2013a. Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A. Crop Sci. 53:1022-1031. https://doi.org/10.2135/cropsci2012.10.0578
  40. Lee, S., Rouf Mian, M. A., McHale, L. K., Wang, H., Wijeratne, A. J., Sneller, C. H. and Dorrance, A. E. 2013b. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841. Theor. Appl. Genet. 126:1121-1132. https://doi.org/10.1007/s00122-013-2040-x
  41. Matheron, M. E. and Porchas, M. 2014. Effectiveness of 14 fungicides for suppressing lesions caused by Phytophthora capsici on inoculated stems of chile pepper seedlings. Plant Health Prog. 15:166-171. https://doi.org/10.1094/PHP-RS-14-0017
  42. McBlain, B. A., Hacker, J. K., Zimmerly, M. M. and Schmitthenner, A. F. 1991. Tolerance to Phytophthora rot in soybean: II. Evaluation of three tolerance screening methods. Crop Sci. 31:1412-1417. https://doi.org/10.2135/cropsci1991.0011183X003100060003x
  43. Mideros, S., Nita, M. and Dorrance, A. E. 2007. Characterization of components of partial resistance, Rps2, and root resistance to Phytophthora sojae in soybean. Phytopathology 97:655-662. https://doi.org/10.1094/PHYTO-97-5-0655
  44. Mimuro, G. 2011. Control of Phytophthora root and stem rot of soybean by seed treatment with fungicides and amelioration of soil acidity. Plant Prot. 65:351-355 (in Japanese).
  45. Mitani, S., Araki, S., Yamaguchi, T., Takii, Y., Ohshima, T. and Matsuo, N. 2001. Antifungal activity of the novel fungicide cyazofamid against Phytophthora infestans and other plant pathogenic fungi in vitro. Pestic. Biochem. Physiol. 70:92-99. https://doi.org/10.1006/pest.2001.2541
  46. Moriwaki, J. 2010. Aiming at the construction of the race distinction system of Japanese Phytophthora sojae. Plant Prot. 64:508-510 (in Japanese).
  47. Mukobata, H. and Sekihara, J. 2006. Occurrence of Phytophthora root and stem rot of soybean in various places in Toyama Prefecture in 2002. Proc. Assoc. Plant Prot. Hokuriku 55:27-32 (in Japanese).
  48. Munkvold, G. P. 2009. Seed pathology progress in academia and industry. Annu. Rev. Phytopathol. 47:285-311. https://doi.org/10.1146/annurev-phyto-080508-081916
  49. Parlevliet, J. E. 1979. Components of resistance that reduce the rate of epidemic development. Annu. Rev. Phytopathol. 17:203-222. https://doi.org/10.1146/annurev.py.17.090179.001223
  50. Paxton, J. D. and Chamberlain, D. W. 1969. Phytoalexin production and disease resistance in soybeans as affected by age. Phytopathology 59:775-777.
  51. R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.r-project.org/ [15 March 2018]
  52. Rennie, B. D., Buzzell, R. I., Anderson, T. R. and Beversdorf, W. D. 1992. Evaluation of four Japanese soybean cultivars for Rps alleles conferring resistance to Phytophthora megasperma f. sp. glycinea. Can. J. Plant Sci. 72:217-220. https://doi.org/10.4141/cjps92-022
  53. Schmitthenner, A. F. 1985. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis. 69:362-368. https://doi.org/10.1094/PD-69-362
  54. Schmitthenner, A. F. and Dorrance, A. E. 2015. Phytophthora root and stem rot. In: Compendium of soybean diseases and pests, eds. by G. L. Hartman, J. C. Rupe, E. J. Sikora, L. L. Domier, J. A. Davis, and K. L. Steffey, pp. 73-76. The American Phytopathological Society Press, St. Paul, MN, USA.
  55. Schneider, R., Rolling, W., Song, Q., Cregan, P., Dorrance, A. E. and McHale, L. K. 2016. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea. BMC Genomics 17:607. https://doi.org/10.1186/s12864-016-2918-5
  56. Stewart, S. and Robertson, A. E. 2012. A modified method to screen for partial resistance to Phytophthora sojae in soybean. Crop Sci. 52:1181-1186. https://doi.org/10.2135/cropsci2011.05.0241
  57. Sugimoto, T., Yoshida, S., Aino, M., Watanabe, K., Shiwaku, K. and Sugimoto, M. 2006. Race distribution of Phytophthora sojae on soybean in Hyogo, Japan. J. Gen. Plant Pathol. 72:92-97. https://doi.org/10.1007/s10327-005-0255-7
  58. Sugimoto, T., Yoshida, S., Kaga, A., Hajika, M., Watanabe, K., Aino, M., Tatsuda, K., Yamamoto, R., Matoh, T., Walker, D. R., Biggs, A. R. and Ishimoto, M. 2011. Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge. Euphytica 182:133-145. https://doi.org/10.1007/s10681-011-0525-8
  59. Sugimoto, T., Kato, M., Yoshida, S., Matsumoto, I., Kobayashi, T., Kaga, A., Hajika, M., Yamamoto, R., Watanabe, K., Aino, M., Matoh, T., Walker, D. R., Biggs, A. R. and Ishimoto, M. 2012. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed Sci. 61:511-522. https://doi.org/10.1270/jsbbs.61.511
  60. Taylor, R. J., Salas, B., Secor, G. A., Rivera, V. and Gudmestad, N. C. 2002. Sensitivity of North American isolates of Phytophthora erythroseptica and Pythium ultimum to mefenoxam (metalaxyl). Plant Dis. 86:797-802. https://doi.org/10.1094/PDIS.2002.86.7.797
  61. Tooley, P. W. and Grau, C. R. 1982. Identification and quantitative characterization of rate-reducing resistance to Phytophthora megasperma f. sp. glycinea in soybean seedlings. Phytopathology 72:727-733. https://doi.org/10.1094/Phyto-72-727
  62. Tooley, P. W. and Grau, C. R. 1984. Field characterization of ratereducing resistance to Phytophthora megasperma f. sp. glycinea and yield of soybean. Phytopathology 74:1201-1208. https://doi.org/10.1094/Phyto-74-1201
  63. Tucker, D. M., Maroof, S., Mideros, S., Skoneczka, J. A., Nabati, D. A., Buss, G. R., Hoeschele, I., Tyler, B. M., St. Martin, S. K. and Dorrance, A. E. 2010. Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean interspecific cross. Crop Sci. 50:628-635. https://doi.org/10.2135/cropsci2009.03.0161
  64. Tyler, B. M. 2007. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol. Plant Pathol. 8:1-8. https://doi.org/10.1111/j.1364-3703.2006.00373.x
  65. Vaartaja, O., Pitblado, R. E., Buzzell, R. I. and Crawford, L. G. 1979. Chemical and biological control of Phytophthora root and stalk rot of soybean. Can. J. Plant Sci. 59:307-311. https://doi.org/10.4141/cjps79-050
  66. Wrather, J. A., Anderson, T. R., Arsyad, D. M., Tan, Y., Ploper, L. D., Porta-Puglia, A., Ram, H. H. and Yorinori, J. T. 2001a. Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Can. J. Plant Pathol. 23:115-121. https://doi.org/10.1080/07060660109506918
  67. Wrather, J. A., Stienstra, W. C. and Koenning, S. R. 2001b. Soybean disease loss estimates for the United States from 1996 to 1998. Can. J. Plant Pathol. 23:122-131. https://doi.org/10.1080/07060660109506919
  68. Wrather, A. and Koenning, S. 2009. Effects of diseases on soybean yields in the United States 1996 to 2007. Plant Health Prog. doi: 10.1094/PHP-2009-0401-01-RS.
  69. Wu, X., Zhou, B., Zhao, J., Guo, N., Zhang, B., Yang, F., Chen, S., Gai, J. and Xing, H. 2011. Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Plant Breed. 130:144-149. https://doi.org/10.1111/j.1439-0523.2010.01799.x
  70. Yamashita, Y., Tazawa, A. and Minami, M. 2012. Development of a method to evaluate the field resistance of soybean to Phytophthora sojae. Jpn. J. Crop Sci. 81:183-189 (in Japanese). https://doi.org/10.1626/jcs.81.183