DOI QR코드

DOI QR Code

지대지 유도탄 체계 개념설계를 위한 다목적 최적화 프레임워크

A Multi-Objective Optimization Framework for Conceptual Design of a Surface-to-Surface Missile System

  • 투고 : 2019.03.07
  • 심사 : 2019.05.27
  • 발행 : 2019.06.01

초록

본 논문은 지대지 유도탄 체계의 개념 설계를 위한 다목적 최적화(MOO) 프레임워크를 제안한다. 제안된 프레임워크를 통해 연구 개발 과정의 초기 단계에 체계 수준에서 trade-off를 수행하기 위한 파레토 프론트를 도출 할 수 있다. 제안된 프레임워크는 모델의 추가 및 변경이 용이하도록 네 가지 기능 모듈(환경 설정 모듈, 변수 설정 모듈, 다분야 분석 모듈 및 최적화 모듈)로 구성되었으며, 이를 활용한 개념 설계 프로세스를 통해 개발 초기 단계에 다양한 설계안에 대한 검토를 수행하는 목적을 달성할 수 있었다. 프레임 워크의 효과를 보여주는 사례 연구를 제시하여 체계 설계에 적용 가능성을 확인하였고, 초기 개념 설계 단계에서 신뢰도와 계산시간 감소를 확보할 수 있는 설계 환경을 제시하는데 기여할 수 있었다.

This paper proposes a multi-objective optimization (MOO) framework for conceptual design of a surface-to-surface missile system. It can generate the set of Pareto optimal system design, which can be used for system trade-off study in a very early stage of the research and development process. The proposed framework consists of four functional modules (an environmental setting module, a variable setting module, a multidisciplinary analysis module and an optimization module) to make the model easy to change, and the concept design process using the framework was able to achieve the purpose of reviewing various designs in the early stage of development. A case study demonstrating the effectiveness of the framework has presented applicability to the system design, and the proposed framework has contributed to presenting a design environment that can ensure reliability and reduce computational time in the conceptual design stage.

키워드

참고문헌

  1. Haskins, C., Forsberg, K., and Krueger, M., INCOSE SYSTEMS ENGINEERING HANDBOOK, INCOSE-TP-2003-002-03, June 2006.
  2. Frits, A. P., Fleeman, E. L., and Mavris, D. N., "Use of a Conceptual Sizing Tool for Conceptual Design of Tactical Missile(U)," Proceeding of the Missile Sciences Conference, 2002.
  3. Nguyen, N. V., Tyan, M., Jin, S. H., and Lee, J. W., "Adaptive Multifidelity Constraints Method for Efficient Multidisciplinary Missile Design Framework," Journal of Spacecraft and Rockets, Vol. 53, No. 1, January-February 2016, pp. 184-194. https://doi.org/10.2514/1.A33312
  4. Schonning, M. A., Nayfeh, J. F., and Zarda, P. R., "Using Response Surface Approximations to Cover Holes in the Design Space : Conceptual Design of a Missile," Journal of Computing and Information Science in Engineering, Vol. 2, September 2002, pp. 224-231. https://doi.org/10.1115/1.1527056
  5. Lee, K. K., Lee, K. H., Woo, E. T., and Han, S. H., "Optimization Process for Concept Design of Tactical Missiles by Using Pareto Front and TOPSIS," International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 7, pp. 1371-1376. https://doi.org/10.1007/s12541-014-0478-7
  6. Pue, A. J., Hildebrand, R. J., Clemens, D. E., Gottlieb, J. R., Bielefeld, J. M., and Miller, T. C., "Missile Concept Optimization for Ballistic Missile Defense," Johns Hopkins APL Technical Digest, Vol. 32, No. 5, 2014, pp. 774-786.
  7. Fowler, L., and Rogers, J., "Airframe Performance Optimization of Guided Projectiles Using Design of Experiments," Journal of Spacecraft and Rockets, Vol. 52, No. 6, November-December 2015, pp. 1603-1613. https://doi.org/10.2514/1.A33367
  8. Bagassi, S., Lucchi, F., and Persiani, F., "Aircraft Preliminary Design: Genetic Algorithm Based Optimization Method," 29th Congress of the International Council of the Aeronautical Sciences, September 7-12, 2014.
  9. http://mathworks.com
  10. PHX ModelCenter Basic Training, Phoenix Integration, Inc. 2011.
  11. Fleeman, E. L., Tactical Missile Design, American Institute of Aeronautics and Astronautics Education Series, Reston, VA, pp. 91.
  12. Zarchan, P., Tactical and Strategic Missile Guidance, 6th Edition, 2012.
  13. CHIN, S. S., Missile Configuration Design, McGRAW-HILL Book Company, INC. 1961.
  14. Design Exploration and Optimization Using Model Center, Phoenix Integration, Inc. 2010.
  15. https://www.lockheedmartin.com
  16. American National Standard, Mass Properties Control for Space Systems, ANSI/AIAA S-120A-2015.