DOI QR코드

DOI QR Code

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ;
  • Xiao, Wan-shen (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University) ;
  • Zhu, Haiping (School of Computing, Engineering and Mathematics, Western Sydney University)
  • 투고 : 2018.11.30
  • 심사 : 2019.04.24
  • 발행 : 2019.06.10

초록

We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

키워드

참고문헌

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. http://dx.doi.org/10.12989/scs.2017.25.6.693
  2. Ansari, R., Hasrati, E., Gholami, R. and Sadeghi, F. (2015), "Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams", Compos. Part B Eng., 83, 226-241. https://doi.org/10.1016/j.compositesb.2015.08.038
  3. Arani, A.G., Maraghi, Z.K., Mozdianfard, M.R. and Shajari, A.R. (2010), "Thermo-piezo-magneto-mechanical stresses analysis of FGPM hollow rotating thin disk", Int. J. Mech. Mater. Des., 6(4), 341-349. https://doi.org/10.1007/s10999-010-9141-3
  4. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. http://dx.doi.org/10.12989/scs.2015.18.1.187
  5. Barati, M.R. (2017), "On non-linear vibrations of flexoelectric nanobeams", Int. J. Eng. Sci., 121, 143-153. https://doi.org/10.1016/j.ijengsci.2017.09.001
  6. Bhattacharya, S. and Debabrata, D. (2019), "Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory", Compos. Struct., 215, 471-492. https://doi.org/10.1016/j.compstruct.2019.01.080
  7. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052
  8. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025
  9. Chen, X.C., Zhang, X.L., Lu, Y.X., et al. (2019), "Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams", Int. J. Mech. Sci., 151, 424-443. https://doi.org/10.1016/j.ijmecsci.2018.12.001
  10. Dai, T. and Dai, H.L. (2017), "Analysis of a rotating fgmee circular disk with variable thickness under thermal environment", Appl. Math. Model, 45, 900-924. https://doi.org/10.1016/j.apm.2017.01.007
  11. Dai, H., Yue, X., Yuan, J. and Atluri, S.N. (2014), "A time domain collocation method for studying the aeroelasticity of a two dimensional airfoil with a structural nonlinearity", J. Compos. Phys., 270(3), 214-237. https://doi.org/10.1016/j.jcp.2014.03.063
  12. Dehrouyeh-Semnani, A.M. (2017), "On boundary conditions for thermally loaded FG beams", Int. J. Eng. Sci., 119, 109-127. https://doi.org/10.1016/j.ijengsci.2017.06.017
  13. Dehrouyeh-Semnani, A.M. (2018), "On the thermally induced non-linear response of functionally graded beams", Int. J. Eng. Sci., 125, 53-74. https://doi.org/10.1016/j.ijengsci.2017.12.001
  14. Dehrouyeh-Semnani, A.M. and Bahrami, A. (2016), "On sizedependent Timoshenko beam element based on modified couple stress theory", Int. J. Eng. Sci., 107, 134-148. https://doi.org/10.1016/j.ijengsci.2016.07.006
  15. Dehrouyeh-Semnani, A.M., Dehrouyeh, M., Torabi-Kafshgari, M. and Nikkhah-Bahrami, M. (2015), "An investigation into size-dependent vibration damping characteristics of functionally graded viscoelastically damped sandwich microbeams", Int. J. Eng. Sci., 96, 68-85. https://doi.org/10.1016/j.ijengsci.2015.07.008
  16. Dehrouyeh-Semnani, A.M., Mostafaei, H. and Nikkhah, M., (2016), "Free flexural vibration of geometrically imperfect functionally graded microbeams", Int. J. Eng. Sci., 105, 56-79. https://doi.org/10.1016/j.ijengsci.2016.05.002
  17. Dehrouyeh-Semnani, A.M., Mostafaei, H., Dehrouyeh, M. and Nikkhah-Bahrami, M. (2017), "Thermal pre- and post-snap-through buckling of a geometrically imperfect doubly-clamped microbeam made of temperature-dependent functionally graded materials", Compos. Struct., 170, 122-134. https://doi.org/10.1016/j.compstruct.2017.03.003
  18. Ebrahimi, F. and Dabbagh, A. (2017a), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magnetoelectro-elastic nanoplates", Mater Research Express, 4(2).
  19. Ebrahimi, F. and Dabbagh, A. (2017b), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058
  20. Ebrahimi, F. and Barati, M.R. (2016a), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  21. Ebrahimi, F. and Barati, M.R. (2016b), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1-12. https://doi.org/10.1007/s13369-015-1722-x
  22. Ebrahimi, F. and Barati, M.R. (2016c), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stress., 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076
  23. Ebrahimi, F. and Barati, M.R. (2017), "Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory", Mech. Adv. Mater. Struct., 25(11), 953-963. https://doi.org/10.1080/15376494.2017.1329467
  24. El-Borgi, S., Rajendran, P., Friswell, M.I., Trabelssi, M. and Reddy, J.N. (2018), "Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory", Compos. Struct., 186, 274-292. https://doi.org/10.1016/j.compstruct.2017.12.002
  25. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99(5), 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
  26. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  27. Esfahani, S.E., Kiani, Y. and Eslami, M.R. (2013), "Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations", Int. J. Mech. Sci., 69, 10-20. https://doi.org/10.1016/j.ijmecsci.2013.01.007
  28. Farajpour, A., Ghayesh, H.M. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006
  29. Farajpour, A., Ghayesh, M.H, and Farokhi, H. (2019), "Largeamplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes", Int. J. Mech. Sci., 150, 510-525. https://doi.org/10.1016/j.ijmecsci.2018.09.043
  30. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., Int. J., 27(1), 109-122. http://dx.doi.org/10.12989/scs.2018.27.1.109
  31. Ghadiri, M., Rajabpour, A. and Akbarshahi, A. (2017), "Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects", Appl. Math. Model., 50, 676-694. https://doi.org/10.1016/j.apm.2017.06.019
  32. Ghayesh, M.H. and Farajpour, A. (2018a), "Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory", Int. J. Eng. Sci., 129, 84-95. https://doi.org/10.1016/j.ijengsci.2018.04.003
  33. Ghayesh, M.H. and Farajpour, A. (2018b), "Nonlinear coupled mechanics of nanotubes incorporating both nonlocal and strain gradient effects", Mech. Adv. Mater. Struct., 1-10.
  34. Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001
  35. Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Resonance responses of geometrically imperfect functionally graded extensible microbeams", 12(5), 051002. https://doi.org/10.1115/1.4035214
  36. Guo, J. and Wang, Y. (2017), "Size-dependent three-phase cylinder model of magnetoelectroelastic nanocomposites with interface effect under antiplane shear", Acta Mech., 229(3), 1-16.
  37. Hall, K.C., Thomas, J.P. and Clark, W.S. (2015), "Computation of unsteady nonlinear flows in cascades using a harmonic balance technique", Aiaa. J., 40(5), 879-886. https://doi.org/10.2514/2.1754
  38. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. http://dx.doi.org/10.12989/scs.2015.18.1.235
  39. Hao, F.Q. (2007), "Thermal post-buckling analyses of functionally graded material rod", Appl. Math. Mech., 28(1), 59-67. https://doi.org/10.1007/s10483-007-0107-z
  40. Jha, D.K., Tarun, K. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96(4), 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
  41. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
  42. Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater. Sci. Eng. A, 362(1), 81-106. https://doi.org/10.1016/S0921-5093(03)00578-1
  43. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  44. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticityz", J. Mech. Phys. Solids, 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  45. Lei, J., He, Y., Guo, S., Li, Z. and Liu, D. (2016), "Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity", Aip Adv., 10, 51-59.
  46. Li, L., Li, X. and Hu, Y. (2016a), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  47. Li, L., Hu, Y. and Li, X. (2016b), "Longitudinal vibration of sizedependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115-116, 135-144. https://doi.org/10.1016/j.ijmecsci.2016.06.011
  48. Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
  49. Liebold, C. and Muller, W. (2016), "Comparison of gradient elasticity models for the bending of micromaterials", Compos. Mater. Sci., 116, 52-61. https://doi.org/10.1016/j.commatsci.2015.10.031
  50. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  51. Liu, H., Lv, Z. and Wu, H. (2019), "Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory", Compos. Struct., 214, 47-61. https://doi.org/10.1016/j.compstruct.2019.01.090
  52. Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006
  53. Ma, L.S. and Lee, D.W. (2011), "A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading", Compos. Struct., 93(2), 831-842. https://doi.org/10.1016/j.compstruct.2010.07.011
  54. Ma, L.H., Ke, L.L., Reddy, J.N., Yang, J., Kitipornchai, S. and Wang, Y.S. (2017), "Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-20. https://doi.org/10.1016/j.compstruct.2018.05.061
  55. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175. http://dx.doi.org/10.12989/scs.2017.25.2.157
  56. Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5
  57. Miyamoto, Y., Kaysser, W.A. and Rabin, B.H. (2001), "Functionally graded materials", Encyclopedia Mater, Sci. Tech., 44(497), 3407-3413.
  58. Mook, D. and Nayfeh, A. (1979), Nonlinear Oscillations, John Wiley & Sons, New York, NY, USA.
  59. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded euler-bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001
  60. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal timoshenko beam theory", Int. J. Eng. Sci., 77(7), 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
  61. Saadatfar, M. and Aghaie-Khafri, M. (2014), "Hygrothermomagnetoelectroelastic analysis of a functionally graded magnetoelectroelastic hollow sphere resting on an elastic foundation", Smart Mater. Struct., 23(3), 35004-35016. https://doi.org/10.1088/0964-1726/23/3/035004
  62. Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with gpls", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031
  63. She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005
  64. She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018a), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
  65. She, G.L., Yuan, F.G. and Ren, Y.R. (2018b), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002
  66. She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018c), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), p. 368. https://doi.org/10.1140/epjp/i2018-12196-5
  67. She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018d), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063
  68. She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005
  69. Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013
  70. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64(1), 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  71. Tang, C. and Alici, G. (2011a), "Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: I. Experimental determination of length-scale factors", J. Phys. D. Appl. Phys., 44(33), 335501. https://doi.org/10.1088/0022-3727/44/33/335501
  72. Tang, C. and Alici, G. (2011b), "Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: II. Experimental verification of deflection models using atomic force microscopy", J. Phys. D. Appl. Phys., 44(33), 335502. https://doi.org/10.1088/0022-3727/44/33/335502
  73. Tao, M.A., Zhao, Z.M., Liu, L.X., Gao, C. and Huang, X.G. (2012), "The research development and future application of functionally gradient materials", Sci. Tech. Chem. Ind.
  74. Thai, S., Thai, H.T., Vo, T.P. and Patel, V.I. (2018), "A simple shear deformation theory for nonlocal beams", Compo. Struct., 1, 262-270.
  75. Trinh, L.C., Nguyen, H.X., Vo, T.P. and Nguyen, T.K (2016), "Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory", Compos. Struct., 154, 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033
  76. Wu, H.L., Kitipornchai, S. and Yang, J. (2016), "Thermal Buckling and Postbuckling Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Beams", Appl. Mech., Mater., 846, 182-187. https://doi.org/10.4028/www.scientific.net/AMM.846.182
  77. Xiao, W.S., Gao, Y. and Zhu, H.P. (2018), "Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams", Microsyst. Technol. https://doi.org/10.1007/s00542-018-4145-2
  78. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  79. Zhang, D.G. (2013), "Nonlinear bending analysis of fgm beams based on physical neutral surface and high order shear deformation theory," Compos. Struct., 100(5), 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024
  80. Zhang, D.G. (2015), "Nonlinear static analysis of fgm infinite cylindrical shallow shells based on physical neutral surface and high order shear deformation theory", Appl. Math. Model., 39(5-6), 1587-1596. https://doi.org/10.1016/j.apm.2014.09.023
  81. Zhang, P. and Fu, Y. (2013), "A higher-order beam model for tubes", Eur. J. Mech. A Solids, 38, 12-19. https://doi.org/10.1016/j.euromechsol.2012.09.009
  82. Zhang, D.G. and Zhou, Y.H. (2009), "A theoretical analysis of fgm thin plates based on physical neutral surface", Compos. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016
  83. Zhong, J., Fu, Y., Wan, D. and Li, Y. (2016), "Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model", Appl. Math. Model., 40(17-18), 7601-7614. https://doi.org/10.1016/j.apm.2016.03.031
  84. Zhou, J. (1986), Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China.

피인용 문헌

  1. Finite Element Modeling for Static Bending Behaviors of Rotating FGM Porous Beams with Geometrical Imperfections Resting on Elastic Foundation and Subjected to Axial Compression vol.2021, 2019, https://doi.org/10.1155/2021/3835440
  2. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2019, https://doi.org/10.12989/scs.2021.38.5.533
  3. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.271
  4. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157