DOI QR코드

DOI QR Code

Non-linear dynamics of wetland vegetation induced by groundwater table

지하수위와 연계된 습지 식생의 비선형 동역학

  • Lee, Okjeong (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Kim, Sangdan (Department of Environmental Engineering, 45, Pukyong National University)
  • 이옥정 (부경대학교 지구환경시스템과학부 환경공학전공) ;
  • 김상단 (부경대학교 환경공학과)
  • Received : 2019.04.19
  • Accepted : 2019.05.12
  • Published : 2019.05.31

Abstract

Bi-directional interaction between vegetation and groundwater table has a great influence on the dynamics of wetland vegetation. In this study, nonlinear dynamics of wetland vegetation affected by groundwater are analyzed. The effect on groundwater is described as a loss term in the governing equation of wetland vegetation and it is explored how the wetland vegetation is likely to converge into two attractors by groundwater table change. From this conceptual approach, the vulnerability to catastrophic shifts in stable state where the current vegetation species are extinct and stabilized by other vegetation species is analyzed in response to groundwater table.

식생과 지하수위 사이의 양방향 상호 작용은 습지 식생의 동역학에 많은 영향을 미친다. 본 연구에서는 지하수위에 의해 영향을 받는 습지 식생의 비선형 동역학이 분석된다. 지하수위에 대한 영향은 습지 식생의 지배방정식에서 손실 항으로 설명되며, 지하수위 변화에 따라서 습지 식생이 어떻게 서로 다른 두 개의 안정적인 상태로 수렴될 가능성이 있게 되는지를 살펴보게 된다. 이러한 개념적 접근법으로부터 지하수위 변화에 따라 현재 습지에 존재하는 식생이 소멸되어 다른 식생 종으로 안정화되는 대변환에 대한 취약성이 분석된다.

Keywords

HKSJBV_2019_v21n2_132_f0001.png 이미지

Fig. 1. Conceptual relationship between normalized vegetation biomass and groundwater table depth at wetland ecosystem.

HKSJBV_2019_v21n2_132_f0002.png 이미지

Fig. 2. Loss function with various optimal groundwater table depths.

HKSJBV_2019_v21n2_132_f0003.png 이미지

Fig. 3. Phase portrait of vegetation with linear loss function in constant groundwater table depth condition.

HKSJBV_2019_v21n2_132_f0004.png 이미지

Fig. 4. Temporal evolution of wetland vegetation with various initial conditions and system parameters.

HKSJBV_2019_v21n2_132_f0005.png 이미지

Fig. 5. Fixed points of vegetation dynamics.

HKSJBV_2019_v21n2_132_f0006.png 이미지

Fig. 6. Temporal evolution of vegetation in wetlands.

HKSJBV_2019_v21n2_132_f0007.png 이미지

Fig. 7. Bifurcation diagram of vegetation dynamics induced groundwater table depth in wetlands.

HKSJBV_2019_v21n2_132_f0008.png 이미지

Fig. 8. Attractors of vegetation dynamics induced by ground water

References

  1. Bogino, S. M., and Jobbagy, E. G. (2011). Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia trees in the pampas (Argentina). Forest Ecology and Management, 262, 1766-1774. doi:10.1016/j.foreco.2011.07.032
  2. Camporeale, C., and Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42, W10415. doi:0043-1397/06/2006WR004933 https://doi.org/10.1029/2006WR004933
  3. Cooper, D. J., Damico, D. R., and Scott, M. L. (2003). Physiological and morphological response patterns of Populus deltoides to alluvial groundwater pumping. Environmental Management, 31, 0215-0226. doi:10.1007/s00267-002-2808-2
  4. Friedman, J. M., and Auble, G. T. (1999). Mortality of riparian box elder from sediment mobilization and extended inundation. Regulated Rivers: Research & Management, 15, 463-476. doi:10.1002/(SICI)1099-1646(199909/10)15:5<463::AID-RRR559>3.0.CO;2-Z
  5. Gurnell, A. M., Bertoldi, W., and Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111, 129-141. doi:10.1016/j.earscirev.2011.11.005
  6. Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology, Evolution, and Systematics, 4, 1-23. doi:10.1146/annurev.es.04.110173.000245
  7. Lite, S. J., Bagstad, K. J., and Stromberg, J. C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, san Pedro river, Arizona, USA. Journal of Arid Environments, 63, 785-813. doi:10.1016/j.jaridenv.2005.03.026
  8. Loheide, S. P., and Booth, E. G. (2011). Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems. Geomorphology, 126, 364-376. doi:10.1016/j.geomorph.2010.04.016
  9. Meek, C. S., Richardson, D. M., and Mucina, L. (2010). A river runs through it: Land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biological Conservation, 143, 156-164. doi:10.1016/j.biocon.2009.09.021
  10. Peck, A. J., and Williamson, D. R. (1987). Effects of forest clearings on groundwater, Journal of Hydrology, 94, 47-65. doi:10.1016/0022-1694(87)90032-1
  11. Ridolfi, L., D'Odorico, P. and F. Laio (2006). Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems, Water Resources Research, 42, W01201. doi:10.1029/2005WR004444
  12. Roy, V., Ruel, J.-C. and Plamondon, A. P. (2000). Establishment, growth and survival of natural regeneration after clearcutting and drainage on forested wetlands, For. Ecol. Manage., 129, 253-267. doi:10.1016/S0378-1127(99)00170-X
  13. Schroder, A., L. Persson, and M. D. De Roos (2005), Direct experimental evidence for alternative stable states: A review, Oikos, 110, 3-19. doi:10.1111/j.0030-1299.2005.13962.x
  14. Stogatz, S. H. (1994), Nonlinear dynamics and chaos, Addison-Wesley Publishing Company, 498p.
  15. Tsoularis, A., and J. Wallance (2002), Analysis of logistic growth models, Math. Biosci., 179, 21-55. doi:10.1016/S0025-5564(02)00096-2
  16. Vesipa, R., Camporeale, C., & Ridolfi, L. (2017). Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models. Advances in Water Resources, 110, 29-50. doi:10.1016/j.advwatres.2017.09.028
  17. You X, Liu J. Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation. Ecol Evol. 2018;8:3648-3659. doi:10.1002/ece3.3886