DOI QR코드

DOI QR Code

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle

고속철도차량 관절대차 갱웨이 링의 내구성 평가

  • Received : 2019.03.28
  • Accepted : 2019.05.03
  • Published : 2019.05.31

Abstract

To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.

동력 집중식 고속 철도차량의 승차감과 주행 안정성 향상 방안으로서 채택한 관절형 대차는 차체와 결합된 기존 독립대차와 달리 객차 사이를 갱웨이 링에 의하여 연결한다. 갱웨이 링은 열차 주행 동안 객차분리를 방지하면서 객차사이 승객 이동에 대한 절대적 안전을 확보되어야 함에도 불구하고, 아직까지 정량적인 내구성 시험기준 설정이 미비하다. 따라서 동력 집중식 고속 철도차량의 승차감과 승객 안전성을 향상을 위해서는 관절형 대차 갱웨이 링에 대한 내구성 평가의 시험기준에 대한 체계적인 연구가 중요하다. 본 연구에서는 고속 철도차량 관절형 대차의 갱웨이 링에 대한 안전성을 검토하기 위하여, 열차 운행조건에 준한 전후, 좌우 및 수직의 3축 모드로부터 7가지 혼합모드 하중조건을 도출하였다. 이 하중조건하에 유한요소해석결과로부터 각 부품들의 안전율은 최소 2.4 이상이다. 또한 변형률-피로수명설계관점에서 내구성 해석을 통하여 피로안전성을 평가하였다. 본 갱웨이 링에 대한 내구성 시험은 혼합모드 하중조건하에 총 4단계의 1,000만 사이클을 수행하였다. 내구성 시험 후에 침투 탐상 검사기법을 이용하여 각 부품의 결함유무를 검토하였다.

Keywords

SHGSCZ_2019_v20n5_66_f0001.png 이미지

Fig. 1. Gangway ring assembly of articulated bogie type train (a) Articulated bogie (b) Fixed ring (c) Carrying ring (d) Gangway ring assembly

SHGSCZ_2019_v20n5_66_f0002.png 이미지

Fig. 2. Durability analysis process based on the strain-life approach

SHGSCZ_2019_v20n5_66_f0003.png 이미지

Fig. 3. Combined loadings of fatigue Test for Gangway:vertical, longitudinal and transverse loads

SHGSCZ_2019_v20n5_66_f0004.png 이미지

Fig. 4. Finite element model of gangway ring assembly

SHGSCZ_2019_v20n5_66_f0005.png 이미지

Fig. 5. Maximum principal stress distribution under load condition ④ (a) assembly (b) carrying ring

SHGSCZ_2019_v20n5_66_f0006.png 이미지

Fig. 6. Durability analysis result of the assembly(a) Strain–life curve(AC42200) (b) Fatigue lifedistribution

SHGSCZ_2019_v20n5_66_f0007.png 이미지

Fig. 7. Flowchart of durability evaluation process of gangway ring

SHGSCZ_2019_v20n5_66_f0008.png 이미지

Fig. 8. Photo of the durability test for gangway ring

SHGSCZ_2019_v20n5_66_f0009.png 이미지

Fig. 9. Non-destructive test results after 10 million cyclic load (a) Carrying ring (b) Fixed ring

Table 1. Load cases based on fatigue test conditions

SHGSCZ_2019_v20n5_66_t0001.png 이미지

Table 2. Yield strength of gangway ring components

SHGSCZ_2019_v20n5_66_t0002.png 이미지

Table 3. FEA results of the assembly under 7 load conditions

SHGSCZ_2019_v20n5_66_t0003.png 이미지

References

  1. EN 12663-1, Railway applications - Structural requirements of railway vehicle bodies - Part 1: Locomotives and passenger rolling stock (and alternative method for freight wagons), CEN, 2010. DOI: https://doi.org/10.3403/BSEN12663
  2. EN 13749, Railway applications - Wheelsets and bogies - Method of specifying the structural requirements of bogie frames, CEN, 2011.
  3. Korea TGV Consortium, Validation Programme Static Test - Bodyshell, Internal Report IE95-00613, pp.25-30, 1995.
  4. Korea TGV Consortium, Structural Calculations of Korean TGV Bodyshell Data Input, Internal Report IE96-006201, p.8, 1996.
  5. Korea TGV Consortium, Qualification Test Procedure of Bodyshell of Trailers T1 and T18 Type Test TRA02, Internal Report IE96-00480, pp.7-17, 1996.
  6. KRRI, Test Result of Bodyshell Load Tests for KTX-II High Speed Train of 90 cars, Oct. 2009.
  7. Chul-Su Kim, "Fatigue Analysis of the Welded Bogie Frame for Rolling Stock Considering Dynamic Effects", Journal of the Korean Society of Mechanical Technology, Vol.19, No.1, pp.101-103, 2017. DOI: https://doi.org/10.17958/ksmt.19.1.201702.100
  8. Ahn Seung-Ho, Kwang-Woo Chung, Jang Seung-Ho and Kim Chul-Soo, "Durability Evaluation of the Korean Gauge - Adjustable Wheelset System", Journal of the Academia-Industrial Society , Vol.13 No.12, pp.5669-5675, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.12.5669
  9. Miner, M. A., "Cumulative damage in fatigue", Journal of Applied Mechanics, Vol. 12, pp.A159-A164, 1945 https://doi.org/10.1115/1.4009458
  10. Gil-Hyun Kang, Latest High-speed Railway Engineering reflecting TSI and EN, p.370-477, Samsung DMS & Printing, 2014.
  11. Simon D. Iwnicki, A Handbook of Railway Vehicle Dynamics, CRC Press, p. 241-243, 2016. DOI: http://dx.doi.org/10.1201/9781420004892.ch1
  12. Cantone L., Durand T., "Longitudinal Forces Evaluation of SNCF Trains", WCRR, pp.7-8, 2011. Available from: http://www.railway-research.org/IMG/pdf/c3_durand_thierry.pdf