DOI QR코드

DOI QR Code

Evaporative Stress Index (ESI)를 활용한 북한의 위성영상기반 농업가뭄 평가

Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea

  • Lee, Hee-Jin (Department of Bioresources and Rural Systems Engineering, Hankyong National University) ;
  • Nam, Won-Ho (Department of Bioresources and Rural Systems Engineering, Institute of Agricultural Environmental Science, Hankyong National University) ;
  • Yoon, Dong-Hyun (Department of Bioresources and Rural Systems Engineering, Hankyong National University) ;
  • Hong, Eun-Mi (School of Natural Resources and Environmental Science, Kangwon National University) ;
  • Kim, Dae-Eui (Rural Research Institute, Korea Rural Community Corporation) ;
  • Svoboda, Mark D. (National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln) ;
  • Tadesse, Tsegaye (National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln) ;
  • Wardlow, Brian D. (Center for Advanced Land Management Information Technologies (CALMIT), School of Natural Resources, University of Nebraska-Lincoln)
  • 투고 : 2019.01.25
  • 심사 : 2019.03.05
  • 발행 : 2019.05.31

초록

North Korea has frequently suffered from extreme agricultural crop droughts, which have led to food shortages, according to the Food and Agriculture Organization (FAO). The increasing frequency of extreme droughts, due to global warming and climate change, has increased the importance of enhancing the national capacity for drought management. Historically, a meteorological drought index based on data collected from weather stations has been widely used. But it has limitations in terms of the distribution of weather stations and the spatial pattern of drought impacts. Satellite-based data can be obtained with the same accuracy and at regular intervals, and is useful for long-term change analysis and environmental monitoring and wide area access in time and space. The Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used to detect drought response as a index of the droughts occurring rapidly over short periods of time. It is more accurate and provides faster analysis of drought conditions compared to the Standardized Precipitation Index (SPI), and the Palmer Drought Severity Index (PDSI). In this study, we analyze drought events during 2015-2017 in North Korea using the ESI satellite-based drought index to determine drought response by comparing with it with the SPI and SPEI drought indices.

키워드

NGHHCI_2019_v61n3_1_f0001.png 이미지

Fig. 1 Locations of meteorological stations in North Korea

NGHHCI_2019_v61n3_1_f0002.png 이미지

Fig. 2 Flow chart of the process for comparing the drought indices

NGHHCI_2019_v61n3_1_f0003.png 이미지

Fig. 3 The seasonal time-series ESI drought maps from April to September in 2015

NGHHCI_2019_v61n3_1_f0004.png 이미지

Fig. 4 The seasonal time-series ESI drought maps from April to September in 2017

NGHHCI_2019_v61n3_1_f0005.png 이미지

Fig. 5 The time-series ESI graph in regional drought in 2015

NGHHCI_2019_v61n3_1_f0006.png 이미지

Fig. 6 The time-series ESI graph in regional drought in 2017

NGHHCI_2019_v61n3_1_f0007.png 이미지

Fig. 7 The seasonal time-series drought maps from April 9 to September 17 in 2015 by the SPI 6, SPEI 6, and ESI

NGHHCI_2019_v61n3_1_f0008.png 이미지

Fig. 8 The seasonal time-series drought maps from April 9 to September 17 in 2017 by the SPI 6, SPEI 6, and ESI

Table 1 Drought severity classification of SPI and SPEI (Svoboda et al., 2002)

NGHHCI_2019_v61n3_1_t0001.png 이미지

Table 2 Monthly ESI mean value in each district in 2015

NGHHCI_2019_v61n3_1_t0002.png 이미지

Table 3 Monthly ESI mean value in each district in 2017

NGHHCI_2019_v61n3_1_t0003.png 이미지

Table 4 Monthly area ratio by drought severity categories from April to September in 2015 as determined by the SPI 6, SPEI 6, and ESI

NGHHCI_2019_v61n3_1_t0004.png 이미지

Table 5 Monthly area ratio by drought severity categories from April to September in 2017 as determined by the SPI 6, SPEI 6, and ESI

NGHHCI_2019_v61n3_1_t0005.png 이미지

참고문헌

  1. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization, Rome.
  2. Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas, 2007. A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: I. model formulation. Journal of Geophysical Research 112: D10117. doi:10.1029/2006JD007506.
  3. Anderson, M. C., C. R. Hain, B. Wardlow, A. Pimstein, J. R. Mecikalski, and W. P. Kustas, 2011. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. Journal of Climate 24: 2025-2044. doi:10.1175/2010JCLI3812.1.
  4. Anderson, M. C., C. R. Hain, J. A. Otkin, X. Zhan, K. C. Mo, M. D. Svoboda, B. Wardlow, and A. Pimstein, 2013. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classifications. Journal of Hydrometeorology 14: 1035-1056. doi:10.1175/JHM-D-12-0140.1.
  5. Anderson, M. C., C. A. Zolin, P. C. Sentelhas, C. R. Hain, K. Semmens, M. T. Yilmaz, F. Gao, J. A. Otkin, and R. Tetrault, 2016. The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts. Remote Sensing of Environment 174(1): 82-99. doi:10.1016/j.rse.2015.11.034.
  6. Bang, N. K., W. H. Nam, E. M. Hong, M. J. Hayes, and M. D. Svoboda, 2018. Assessment of the meteorological characteristics and statistical drought frequency for the extreme 2017 spring drought event across South Korea. Journal of the Korean Society of Agricultural Engineers 60(4): 37-48. doi:10.5389/KSAE.2018.60.4.037.
  7. California Department of Food and Agriculture (CDFA), 2015. Economic analysis of the 2015 drought for California agriculture. August 17, 2015, CDFA.
  8. Food and Agriculture Organization of the United Nations(FAO), 2015. Global Information and Early WarningSystem, GIEWS Update: The Democratic People's Republic of Korea - Prolonged dry spell raises serious concerns for 2015 food crop production. June 17, 2015, FAO.
  9. Food and Agriculture Organization of the United Nations (FAO), 2017. Global Information and Early Warning System, Prolonged dry weather threatens the 2017 main season food crop production. July 20, 2017, FAO.
  10. Harmeling, S., and D. Eckstein, 2013. Global Climate Risk Index 2013 - Who suffers most from extreme weather events? Weater-related loss events in 2011 and 1992 to 2011. Germanwatch.
  11. Hayes, M. J., O. V. Wilhelmi, and C. L. Knutson, 2004. Reducing drought risk: bridging theory and practice. Natural Hazards Review 5(2): 106-113. doi:10.1061/(ASCE)1527-6988(2004)5:2(106).
  12. Hong, E. M., W. H. Nam, J. Y. Choi, and Y. A. Pachepsky, 2016. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea. Agricultural Water Management 165: 163-180. doi:10.1016/j.agwat.2015.12.003.
  13. Jang, M. W., S. H. Yoo, and J. Y. Choi, 2007. Analysis of spring drought using NOAA/AVHRR NDVI for North Korea. Journal of the Korean Society of Agricultural Engineers 49(6): 23-36.
  14. Jeoung, J., D. Kim, and M. Choi, 2017. A study on the utilization of geostationary ocean color imager on communication, ocean and meteorological satellite for drought monitoring. Journal of the Korean Society of Hazard Mitigation 17(3): 69-77. doi:10.9798/KOSHAM.2017.17.3.69.
  15. Kim, B. K., S. D. Kim, J. S. Lee, and H. S. Kim, 2006. Spatio-temporal characteristics of droughts in Korea: construction of drought severity-area-duration curves. Journal of the Korean Society of Civil Engineers 26(1B): 69-78.
  16. Kim, M. S., and Y. I. Moon, 2014. A study on target standardized precipitation index in Korea. Journal of the Korean Society of Civil Engineers 34(4): 1117-1123. doi:10.12652/Ksce.2014.34.4.1117.
  17. Kim, J. H., S. H. Lee, and B. S. Kim, 2018. An assessment of past and future dorughts in North Korea using standardized precipitation evapotranspiration index. Crisisonomy 14(2): 139-151. doi:10.14251/crisisonomy.2018.14.2.139.
  18. Korea Environment Institute (KEI), 2013. A study on constructing a cooperative system for South and North Koreas to counteract climate change on the Korean Peninsula III. Seoul, Korea.
  19. Korea Meteorological Admnistration (KMA), 2011. 30 years report of meteorological observations in North Korea. Seoul, Korea.
  20. McKee, T. B., N. J. Doesken, and J. Kliest, 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference of Applied Climatology, 17-22 January, Anaheim, CA. American Meteorological Society, Boston, MA. 179-184.
  21. Ministry of Agriculture, Food and Rural Affairs (MAFRA), 2016. 2016 Agricultural insurance yearbook - Part 4. 2015 weather, agricultural disaster and natural disaster management, 122-146. Sejong, Korea.
  22. Ministry of Unification, 2015. Weekly report on North Korea. May 30 - Jun 5, 2015, Seoul, Korea.
  23. Ministry of Unification, 2017. Weekly report on North Korea. July 1 - July 7, 2017, Seoul, Korea.
  24. Nam, W. H., M. J. Hayes, M. D. Svoboda, T. Tadesse, and D. A. Wilhite, 2015a. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160: 106-117. doi:10.1016/j.agwat.2015.06.029.
  25. Nam, W. H., T. Tadesse, B. D. Wardlow, M. W. Jang, and S. Y. Hong, 2015b. Satellite-based hybrid drought assessment using vegetation drought response index in South Korea (VegDRI-SKorea). Journal of the Korean Society of Agricultural Engineers 57(4): 1-9. doi:10.5989/KSAE.2015.57.4.001.
  26. Nam W. H., E. M. Hong, and G. A. Baigorria, 2016. How climate change has affected the spatio-temporal patterns of precipitation and temperature at various time scales in North Korea. International Journal of Climatology 36: 722-734. doi:10.1002/joc.4378.
  27. Nam, W. H., E. M. Hong, J. Y. Choi, T. G. Kim, M. J. Hayes, and M. D. Svoboda, 2017. Assessment of the extreme 2014-2015 drought events in North Korea using weekly standardized precipitation evapotranspiration index (SPEI). Journal of the Korean Society of Agricultural Engineers 59(4): 65-74. doi:10.5989/KSAE.2017.59.4.065.
  28. Nam, W. H., T. Tadesse, B. D. Wardlow, M. J. Hayes, M. D. Svoboda, E. M. Hong, Y. A. Pachepsky, and M. W. Jang, 2018. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. International Journal of Remote Sensing 39(5): 1548-1574. doi:10.1080/01431161.2017.1407047.
  29. Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013. Examining rapid onset drought development using thermal infrared-based evaporative stress index. Journal of Hydrometeorology 14: 1057-1074. doi:10.1175/JHM-D-12-0144.1.
  30. Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014. Examining the relationship between drought development and rapid changes in the evaporative stress index. Journal of Hydrometeorology 15: 938-956. doi:10.1175/JHM-D-13-0110.1.
  31. Park, C. E., 2017. Spatial and temporal aspects of drought in South Korea based on standardized precipitation index (SPI) and palmer drought severity index (PDSI). Journal of Agricultural, Life and Environmental Sciences 29(3): 202-214. doi:10.12972/jales.20170019.
  32. Stagge, J. H., L. M. Tallaksen, L. Gudmundsson, A. F. Van Loon, and K. Stahl, 2015. Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology 35: 4027-4040. doi:10.1002/joc.4267.
  33. Sur, C. Y., K. J. Kim, W. J. Choi, J. H. Sim, and M. H. Choi, 2014. Drought assessments using satellite-based drought index in Korea; southern region case in 2013. Journal of Korean Society of Hazard Mitigation 14(3):127-131. doi:10.9798/KOSHAM.2014.14.3.127.
  34. Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens, 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8): 1181-1190. doi:10.1175/1520-0477-83.8.1181.
  35. Tadesse, T., J. F. Brown, and M. J. Hayes, 2005. A new approach for predicting drought-related vegetation stress: integrating satellite, climate, and biophysical data over the U.S. central plains. ISPRS Journal of Photogrammetry & Remote Sensing 59(4): 244-253. doi:10.1016/j.isprsjprs.2005.02.003.
  36. Thornthwaite, C. W., 1948. An approach toward a rational classification of climate. Geographical Review 38(1): 55-94. https://doi.org/10.2307/210739
  37. Vicente-Serrano, S. M., S. Begueria, and J. I. Lopez-Moreno, 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate 23: 1696-1718. doi:10.1175/2009JCLI2909.1.
  38. Wilhite, D. A., M. J. Hayes, C. Knutson, and K. H. Smith, 2000. Planning for drought: moving from crisis to risk management. Journal of the American Water Resources Association 36(4): 697-710. https://doi.org/10.1111/j.1752-1688.2000.tb04299.x
  39. Wilhite, D. A., M. V. K. Sivakumar, and R. Pulwarty, 2014. Managing drought risk in a changing climate: the role of national drought policy. Weather and Climate Extremes 3: 4-13. doi:10.1016/j-wace.2014.01.002.
  40. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, T. G. Kim, A. K. Shin, and M. D. Svoboda, 2018. Application of evaporative stress index (ESI) for satellite-based agricultural drought monitoring in South Korea. Journal of the Korean Society of Agricultural Engineers 60(6): 121-131. doi:10.5389/KSAE.2018.60.6.121.