DOI QR코드

DOI QR Code

Effect of Hydrogen Charging Time and Tensile Loading Speed on Tensile Properties of 304L Stainless Steels

  • Hwang, SeungKuk (Computer Aided Mechanics Department, Changwon Campus Korea Polytechnic) ;
  • Lee, Sangpill (Department of Mechanical Engineering, Dong-Eui University) ;
  • Lee, Jinkyung (Department of Mechanical Engineering, Dong-Eui University) ;
  • Bae, Dongsu (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Lee, Moonhee (Division of Mechanical Engineering, Dong-Eui Institute of Technology) ;
  • Nam, Seunghoon (Center for Materials Measurements, Korea Research Institute of Standards and Science)
  • 투고 : 2018.09.28
  • 심사 : 2019.01.02
  • 발행 : 2019.01.31

초록

This study dealt with the tensile strength characteristics of stainless steel 304L steel by hydrogen charging. Especially, the effect of hydrogen charging time on the tensile strength and ductility of 304L stainless steels was evaluated, in conjunction with the observation of their fracture surfaces. The tensile properties of hydrogen-charged 304L stainless steels were also investigated with the variation of tensile loading speeds. The hydrogen amount of 304L stainless steels obviously increased with the increase of hydrogen charging time. The tensile properties of 304L stainless steels were clearly affected by the short term charging of hydrogen. In particular, the elongation of 304L stainless steels decreased with increasing hydrogen charging time, due to the hydrogen embrittlement. It was also found that the tensile properties of hydrogen-charged 304L stainless steels were very sensitive to the crosshead speed for tensile loading.

키워드

SOOOB6_2019_v22n1_11_f0001.png 이미지

Fig. 1 Effect of hydrogen charging time on the hydrogen content of 304L stainless steels.

SOOOB6_2019_v22n1_11_f0002.png 이미지

Fig. 2 Load-displacement curves of 304L stainless steels depending on the variation of hydrogen charging times.

SOOOB6_2019_v22n1_11_f0003.png 이미지

Fig. 3 Effect of hydrogen charging times on the ultimate tensile strength of 304 stainless steels.

SOOOB6_2019_v22n1_11_f0004.png 이미지

Fig. 4 Effect of hydrogen charging times on the elongation of 304L stainless steels.

SOOOB6_2019_v22n1_11_f0005.png 이미지

Fig. 5 Relationship between hydrogen content and fractured elongation for hydrogen-charged 304L stainless steels.

SOOOB6_2019_v22n1_11_f0006.png 이미지

Fig. 6 Effect of cross-head speeds on the ultimate tensile strength of hydrogen-charged 304L stainless steels.

SOOOB6_2019_v22n1_11_f0007.png 이미지

Fig. 7 Effect of cross-head speeds on the yield strength of hydrogen-charged 304L stainless steels.

SOOOB6_2019_v22n1_11_f0008.png 이미지

Fig. 8 Effect of cross-head speeds on the fractured elongation of hydrogen-charged 304L stainless steels.

SOOOB6_2019_v22n1_11_f0009.png 이미지

Fig. 9 Fractured surface of 304L stainless steels without the hydrogen charging.

SOOOB6_2019_v22n1_11_f0010.png 이미지

Fig. 10 Fractured surface of 304L stainless steels by the variation of hydrogen charging times.

참고문헌

  1. L. M. Amoo and R. L. Fagbenle: International Journal of Hydrogen Energy, 39, pp.12409-12433 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.022
  2. Zhang and C. Hu: International Journal of Hydrogen Energy, 39, pp.12973-12979 (2014) https://doi.org/10.1016/j.ijhydene.2014.06.010
  3. D. H. Lee: International Journal of Hydrogen Energy, 37, pp.15726-15735 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.124
  4. S. Dutta: Journal of Industrial and Engineering Chemistry, 20, pp.1148-1156 (2014). https://doi.org/10.1016/j.jiec.2013.07.037
  5. H. Barthelemy, M. Weber and F. Barbier: International Journal of Hydrogen Energy, 42, pp.7254-7262 (2017). https://doi.org/10.1016/j.ijhydene.2016.03.178
  6. A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad and A. K. Azad: Energy Conversion and Management, 165, pp.602-627 (2018). https://doi.org/10.1016/j.enconman.2018.03.088
  7. J. Zheng, X. Liu. P. Xu, P. Liu, Y. Zhao and J. Yang: International Journal of Hydrogen Energy, 37, pp.1048-1057 (2012). https://doi.org/10.1016/j.ijhydene.2011.02.125
  8. M. Hoelzel, S. A. Danilkin, H. Ehrenberg, D. M. Toebbens, T. J. Udovic, H. Fuess and H. Wipf: Materials Sciences and Engineering A, 384, pp.255-261 (2004). https://doi.org/10.1016/S0921-5093(04)00822-6
  9. C. M. Younes, A. M. Steele, J. A. Nicholson and C. J. Barnett: International Journal of Hydrogen Energy, 38(11), pp.4864-4876 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.016
  10. S. Sugiyama, H. Ohkubo, M. Takenaka, K. Ohsawa, M. I. Ansari, N. Tsukuda and E. Kuramoto: Journal of Nuclear Materials, 283-287, pp.863-867 (2000). https://doi.org/10.1016/S0022-3115(00)00346-9
  11. T. Matsuo, J. Yamabe and S. Matsuoka: International Journal of Hydrogen Energy, 39(7), pp.3542-3551 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.099
  12. M. Au: Materials Science and Engineering A, 454-455, pp.564-569 (2007). https://doi.org/10.1016/j.msea.2006.11.086
  13. P. Rozenak and A. Loew: Corrosion Science, 50(11), pp.3021-3030 (2008). https://doi.org/10.1016/j.corsci.2008.08.045
  14. J. Capelle, I. Dmytrakh and G. Pluvinage: Corrosion Science, 52(5), pp.1554-1559 (2010). https://doi.org/10.1016/j.corsci.2010.02.011
  15. S. P. Lee, S. K. Hwang, J. K. Lee, I. S. Son and D. S. Bae: Journal of the Korean Society for Power System Engineering, 19(5), pp.73-79 (2015). https://doi.org/10.9726/kspse.2015.19.5.073