Fig. 1 Effect of hydrogen charging time on the hydrogen content of 304L stainless steels.
Fig. 2 Load-displacement curves of 304L stainless steels depending on the variation of hydrogen charging times.
Fig. 3 Effect of hydrogen charging times on the ultimate tensile strength of 304 stainless steels.
Fig. 4 Effect of hydrogen charging times on the elongation of 304L stainless steels.
Fig. 5 Relationship between hydrogen content and fractured elongation for hydrogen-charged 304L stainless steels.
Fig. 6 Effect of cross-head speeds on the ultimate tensile strength of hydrogen-charged 304L stainless steels.
Fig. 7 Effect of cross-head speeds on the yield strength of hydrogen-charged 304L stainless steels.
Fig. 8 Effect of cross-head speeds on the fractured elongation of hydrogen-charged 304L stainless steels.
Fig. 9 Fractured surface of 304L stainless steels without the hydrogen charging.
Fig. 10 Fractured surface of 304L stainless steels by the variation of hydrogen charging times.
참고문헌
- L. M. Amoo and R. L. Fagbenle: International Journal of Hydrogen Energy, 39, pp.12409-12433 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.022
- Zhang and C. Hu: International Journal of Hydrogen Energy, 39, pp.12973-12979 (2014) https://doi.org/10.1016/j.ijhydene.2014.06.010
- D. H. Lee: International Journal of Hydrogen Energy, 37, pp.15726-15735 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.124
- S. Dutta: Journal of Industrial and Engineering Chemistry, 20, pp.1148-1156 (2014). https://doi.org/10.1016/j.jiec.2013.07.037
- H. Barthelemy, M. Weber and F. Barbier: International Journal of Hydrogen Energy, 42, pp.7254-7262 (2017). https://doi.org/10.1016/j.ijhydene.2016.03.178
- A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad and A. K. Azad: Energy Conversion and Management, 165, pp.602-627 (2018). https://doi.org/10.1016/j.enconman.2018.03.088
- J. Zheng, X. Liu. P. Xu, P. Liu, Y. Zhao and J. Yang: International Journal of Hydrogen Energy, 37, pp.1048-1057 (2012). https://doi.org/10.1016/j.ijhydene.2011.02.125
- M. Hoelzel, S. A. Danilkin, H. Ehrenberg, D. M. Toebbens, T. J. Udovic, H. Fuess and H. Wipf: Materials Sciences and Engineering A, 384, pp.255-261 (2004). https://doi.org/10.1016/S0921-5093(04)00822-6
- C. M. Younes, A. M. Steele, J. A. Nicholson and C. J. Barnett: International Journal of Hydrogen Energy, 38(11), pp.4864-4876 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.016
- S. Sugiyama, H. Ohkubo, M. Takenaka, K. Ohsawa, M. I. Ansari, N. Tsukuda and E. Kuramoto: Journal of Nuclear Materials, 283-287, pp.863-867 (2000). https://doi.org/10.1016/S0022-3115(00)00346-9
- T. Matsuo, J. Yamabe and S. Matsuoka: International Journal of Hydrogen Energy, 39(7), pp.3542-3551 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.099
- M. Au: Materials Science and Engineering A, 454-455, pp.564-569 (2007). https://doi.org/10.1016/j.msea.2006.11.086
- P. Rozenak and A. Loew: Corrosion Science, 50(11), pp.3021-3030 (2008). https://doi.org/10.1016/j.corsci.2008.08.045
- J. Capelle, I. Dmytrakh and G. Pluvinage: Corrosion Science, 52(5), pp.1554-1559 (2010). https://doi.org/10.1016/j.corsci.2010.02.011
- S. P. Lee, S. K. Hwang, J. K. Lee, I. S. Son and D. S. Bae: Journal of the Korean Society for Power System Engineering, 19(5), pp.73-79 (2015). https://doi.org/10.9726/kspse.2015.19.5.073