DOI QR코드

DOI QR Code

A drought assessment using the generalized complementary principle of evapotranspiration

증발산 상호보완이론을 이용한 가뭄해석

  • Chun, Jong Ahn (Climate Services and Research Department, APEC Climate Center) ;
  • Kim, Daeha (Climate Services and Research Department, APEC Climate Center)
  • 전종안 (APEC 기후센터 기후사업본부) ;
  • 김대하 (APEC 기후센터 기후사업본부)
  • Received : 2019.03.04
  • Accepted : 2019.03.28
  • Published : 2019.05.31

Abstract

To characterize historical droughts in the conterminous United States (CONUS), we estimated the actual evapotranspiration ($ET_a$) in the CONUS using the generalized complementary relationship (GCR) for 1895-2016. The $ET_a$ estimates were compared against simulations from the Noah land surface model (LSM). In this study, the evapotranspiration (ET) deficit defined as the difference between the wet-environment ET ($ET_w$) and $ET_a$ was then normalized to calculate the Standardized Evapotranspiration Deficit Index (SEDI) across the CONUS for the years 1895-2016. The SEDI was compared to the Standard Precipitation Index (SPI) at various time scales. The results showed that the GCR $ET_a$ was slightly higher than the Noah LSM-simualted $ET_a$. As time scales increased, the correlation between the SEDI and the SPI was higher. This study suggests that the GCR has promise as a tool in the estimation of $ET_a$ and SEDI can be useful for the drought characterization.

본 연구의 목적은 일반 상호보완이론(Generalized Complementary Relationship, GCR)을 활용하여 실제증발산량을 추정하고, 추정한 실제증발산량기반 가뭄지수로부터 공통경계미국(Conterminous U.S., CONUS)에 대한 1895~2016년 기간 동안의 가뭄을 해석하는 것이다. GCR 이론으로부터 추정한 $ET_a$는 North American Land Data Assimilation System (NLDAS-2) Noah 지면모형(Land surface models)으로 산정한 $ET_a$와 비교 검증하였다. 또한, GCR로부터 증발산 부족량(ET Deficit)을 산정하고 이를 표준정규화하여 공통경계미국에 대해 Standardized Evapotranspiration Deficit Index (SEDI)를 산정하였다. 이렇게 산정한 SEDI는 Standard Precipitation Index (SPI)와 비교하였다. 본 연구로부터 GCR 기반 $ET_a$는 NLDAS-2 Noah모형의 $ET_a$보다 다소 크게 추정하는 경향을 보였다. SEDI와 SPI의 상관성은 지속시간이 클수록 더 크게 나타났다. 강수와 토양수분의 자료를 사용하지 않는 GCR이론으로부터 비교적 정확한 $ET_a$을 추정할 수 있으며, 증발산 기반인 SEDI가 적절한 가뭄해석에 이용될 수 있을 것으로 판단된다.

Keywords

SJOHCI_2019_v52n5_325_f0001.png 이미지

Fig. 1. The concept of the complementary principle between potential and actual evapotranspiration

SJOHCI_2019_v52n5_325_f0002.png 이미지

Fig. 3. 1:1 scatter plot between mean annual ETa by GCR and by those by NLDAS-Noah for the climate divisions

SJOHCI_2019_v52n5_325_f0003.png 이미지

Fig. 4. Maps of SEDI6 and SPI6 for major drought months in the CONUS. The thresholds for classifying drought conditions (D4 to D0) were –2.0, -1.6, -1.3, -0.8, and -0.5. Wet conditions (W4 to W0) were categorized by the same numbers for D4 to D0 but with positive signs. N represents the normal condition

SJOHCI_2019_v52n5_325_f0004.png 이미지

Fig. 5. (a) Temporal variation of the spatial averaged SEDI6 and SPI6 across CONUS, and (b) changes in D3 and D4 areas defined by SEDI6 and SPI6

SJOHCI_2019_v52n5_325_f0005.png 이미지

Fig. 2. (a) Annual mean precipitation from the PRISM, (b) annual mean ETa estimated by the GCR, and (c) ratios of ETa to precipitation

SJOHCI_2019_v52n5_325_f0006.png 이미지

Fig. 6. Temporal correlation between SEDI and SPI per time scale. The two indices have same time scales in the correlation maps

References

  1. Abatzoglou, J. (2018). GRIDMET Datasets, accessed 15 February 2018, .
  2. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper No. 56, Food and Agriculture Organization of the United Nations, Rome.
  3. Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., and Kustas, W. P. (2011). "Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the conterminous United States." Journal of Climate, Vol. 24, No. 8, pp. 2025-2044. https://doi.org/10.1175/2010JCLI3812.1
  4. Begueria, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B. (2014). "Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring." International Journal of Climatology, Vol. 34, pp. 3001-3023. https://doi.org/10.1002/joc.3887
  5. Bouchet, R. J. (1963). "Evapotranspiration reelle et potentielle, signification climatique." International Association of Scientific Hydrology Publication, Vol. 62, pp. 134-142.
  6. Brutsaert, W. (2015). "A generalized complementary principle with physical constraints for land-surface evaporation." Water Resources Research, Vol. 51, No. 10, pp. 8087-8093. https://doi.org/10.1002/2015WR017720
  7. Burnash, R. J. C. (1995). The NWS river forecast system-catchment modeling. in Computer Models of Watershed Hydrology, edited by V. P. Singh, Water Resources Publications, Littleton, Colo., pp. 311-366.
  8. Cammalleri, C., Micale, F., and Vogt, J. (2016). "A novel soil moisture-based drought severity index (DSI) combining water deficit magnitude and frequency." Hydrological Processes, Vol. 30, No. 2, pp. 289-301, doi: 10.1002/hyp.10578.
  9. Changnon, S. A., Kunkel, K. E., and Changnon, D. (2007). Impacts of recent climate climate anomalies. edited by Losers and Winners, Illinois State Water Survey, Illinois Department of Natural Resources and University of Illinois at Urbana-Champaign, Champaign, Illinois.
  10. Chun, J. A., Baik, J., Kim, D., and Choi, M. (2018). "A comparative assessment of SWAT-model-based evapotranspiration against regional-scale estimates." Ecological Engineering, Vol. 122, pp. 1-9. https://doi.org/10.1016/j.ecoleng.2018.07.015
  11. Crago, R., Szilagyi, J., Qualls, R., and Huntington, J. (2016). "Rescaling the complementary relationship for land surface evaporation." Water Resources Research, Vol. 52, No. 11, pp. 8461-8471. https://doi.org/10.1002/2016WR019753
  12. Dai, A. (2010). "Drought under global warming: a review." Wiley Interdisciplinary Reviews: Climate Change, Vol. 2, No. 1, pp. 45-65. https://doi.org/10.1002/wcc.81
  13. Dai, A. (2011). "Characteristics and trends in various forms of the palmer drought severity index during 1900-2008." Journal of Geophysical Research, Vol. 116, D12115, doi:10.1029/2010JD015541.
  14. Dai, A. (2013). "Increasing drought under global warming in observations and models." Nature Climate Change, Vol. 3, pp. 52-58, doi:10.1038/nclimate1633.
  15. Dracup, J. A., Lee, K. S., and Paulson Jr., E. G. (1980). "On the definitions of droughts." Water Resources Research, Vol. 16 No. 2, pp. 297-302. https://doi.org/10.1029/WR016i002p00297
  16. Ek, M. B., Mitchell, K. E., Lin, Y., Rodgers, E., Grunman, P., Koren, V., Gayno, G., and Tarpley, J. D. (2003). "Implementation of noah land surface model advances in the national centers for environmental prediction operational mesoscale eta model." Journal of Geophysical Research, Vol. 108, No. D22, pp. 8851.
  17. Folger, P., and Cody, B. A. (2014). Drought in the United States: Causes and current understanding. Congressional Research Service, Report 7-5700, R43407. Available at http://www.crs.gov.
  18. Gao, H., Tang, Q., Ferguson, C. R., Wood, E. F., and Lettenmaier, D. P. (2010). "Estimating the water budget of major U.S. river basins via remote sensing." International Journal of Remote Sensing, Vol. 31, No. 14, pp. 3955-3978. https://doi.org/10.1080/01431161.2010.483488
  19. Guo, Z., Dirmeyer, P. A., Koster, R. D., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., Mcavaney, B., Mcgregor, J. L., Mitchell, K., Mocko, D., Oki, T., Oleson, K. W., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T. (2006). "GLACE: The global land-atmosphere coupling experiment. Part II: Analysis." Journal of Hydrometeorology, Vol. 7, pp. 611-625. https://doi.org/10.1175/JHM511.1
  20. Han, S., and Tian, F. (2018). "Derivation of a sigmoid generalized complementary function for evaporation with physical constraints." Water Resources Research, Vol. 54, No. 7, pp. 5050-5068. https://doi.org/10.1029/2017WR021755
  21. Heim, R. R., Jr. (2002). "A review of twentieth-century drought indices used in the United States." Bulletin of the American Meteorological Society, Vol. 83, pp. 1149-1165. https://doi.org/10.1175/1520-0477-83.8.1149
  22. Hobbins, M. T., Wood, A., McEvoy, D. J., Huntington, J. L., Morton, C., Anderson, M., and Hain, C. (2016). "The evaporative demand drought index: Part I-Linking drought evolution to variations in evaporative demand." Journal of Hydrometeorology, Vol. 17, pp. 1745-1761. https://doi.org/10.1175/JHM-D-15-0121.1
  23. Kahler, D. M., and Brutsaert, W. (2006). "Complementary relationship between daily evaporation in the environment and pan evaporation." Water Resources Research, Vol. 42, pp. W05413.
  24. Kangas, R. S., and Brown, T. J. (2007). "Characteristics of US drought and pluvials from a high-resolution spatial dataset." International Journal of Climatology, Vol. 27, No. 10, pp. 1303-1325. https://doi.org/10.1002/joc.1473
  25. Kim, D., and Rhee, J. (2016). "A drought index based on actual evapotranspiration from the Bouchet hypothesis." Geophysical Research Letters, Vol. 43, No. 19, pp. 10277-10285. https://doi.org/10.1002/2016GL070302
  26. Koster, R. D., and Suarez, M. J. (1996). Energy and water balance calculations in the mosaic LSM. NASA Technical Memorandum, NASA TM-104606, 9, 60, Goddard Space Flight Cent, Greenbelt, MD.
  27. Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T., (2004). "Regions of strong coupling between soil moisture and precipitation." Science, Vol. 5687, No. 10, pp. 1138-1140.
  28. Koster, R. D., Guo, Z., Dirmeyer, P. A., Bonan, G., Chan, E., Cox, P., Davies, H., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Hsuan Lu, C., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K. W., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T. (2006). "GLACE: The global land-atmosphere coupling experiment. Part I: Overview." Journal of Hydrometeorology, Vol. 7, pp. 590-610. https://doi.org/10.1175/JHM510.1
  29. Lhomme, J.-P. (1997). "A theoretical basis for the Priestley-Taylor coefficient." Boundary-Layer Meteorology, Vol. 82, pp. 179-191. https://doi.org/10.1023/A:1000281114105
  30. Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J. (1994). "A simple hydrologically based model of land surface water and energy fluxes for GCMs." Journal of Geophysical Research, Vol. 99, No. D7, pp. 14415-14428. https://doi.org/10.1029/94JD00483
  31. McEvoy, D. J., Huntington, J. L., Hobbins, M. T., Wood, A., Morton, C., Anderson, M., and Hain, C. (2016). "The evaporative demand drought index. Part II: CONUS-wide assessment against common drought indicators." Journal of Hydrometeorology, Vol. 17, pp. 1763-1779. https://doi.org/10.1175/JHM-D-15-0122.1
  32. McKee, T. B. N., Doesken, J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." In Proceedings of Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, CA., pp. 179-184.
  33. Monteith, J. L. (1965). "Evaporation and the environment." 19th Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-234.
  34. Nalbantis, I. (2008). "Evaluation of a hydrological drought index." European Water, Vol. 23, No. 24, pp. 67-77.
  35. National Aeronautics and Space Administration (NASA) (2018). LDAS (Land Data Assimilation System), accessed 10 August 2018, .
  36. Palmer, W. C. (1965). Meteorological drought. U.S. Weather Bureau, Research Paper 45, pp. 65.
  37. Penman, H. L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society London A, Vol. 194, No. S, pp. 120-145.
  38. Priestley, C. H., and Taylor, R. J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  39. PRISM Climate Group (2018). Northwest Alliance for Computational Science and Engineering. PRISM Climate Data, accessed 15 February 2018, .
  40. Sheffield, J., and Wood, E. F. (2008). "Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations." Climate Dynamics, Vol. 31, No. 1, pp. 79-105. https://doi.org/10.1007/s00382-007-0340-z
  41. Sheffield, J., Wood, E. F., and Roderick, M. L. (2012). "Little change in global drought over the past 60 years." Nature, Vol. 491, pp. 435-438. https://doi.org/10.1038/nature11575
  42. Sridhar, V., and Nayak, A. (2010). "Implications of climate-driven variability and trends for the hydrologic assessment of the Reynolds Creek Experimental Watershed, Idaho." Journal of Hydrology, Vol. 385, No. 1-4, pp.183-202. https://doi.org/10.1016/j.jhydrol.2010.02.020.
  43. Steduto, P., Hsiao, T. C., Fereres, E., and Raes, D. (2012). Crop Yield Response to Water. FAO Irrigation and Drainage Paper No. 66, Food and Agriculture Organization of the United Nations, Rome.
  44. Strzepek, K., Yohe, G., Neumann, J., and Boehlert, B. (2010). "Characterizing changes in drought risk for the United States from climate change." Environmental Research Letters, Vol. 5, 044012, pp. 1-9. https://doi.org/10.1088/1748-9326/5/4/044012
  45. Szilagyi, J. (2018). "Anthropogenic hydrological cycle disturbance at a regional scale: State-wide evapotranspiration trends (1979-2015) across Nebraska, USA." Journal of Hydrology, Vol. 557, pp. 600-612. https://doi.org/10.1016/j.jhydrol.2017.12.062
  46. Szilagyi, J., Crago, R., and Qualls, R. (2017). "A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology." Journal of Geophysical Research: Atmospheres, Vol. 122, No. 1, pp. 264-278. https://doi.org/10.1002/2016JD025611
  47. Thornthwaite, C. W. (1948). "An approach toward a rational classification of climate." Geographical Review, Vol. 38, No. 1, pp. 55-94. https://doi.org/10.2307/210739
  48. Trenberth, K. E., Branstator, G. W., and Arkin, P. A. (1988). "Origins of the 1988 North American Drought." Science, Vol. 242, No. 4886, pp. 1640-1645. https://doi.org/10.1126/science.242.4886.1640
  49. Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K.R., and Sheffield., J. (2014). "Global warming and changes in drought." Nature Climate Change, Vol. 4, pp. 17-22. https://doi.org/10.1038/nclimate2067
  50. van der Ent, R. J., and Tuinenburg, O. A. (2017). "The residence time of water in the atmosphere revisited." Hydrology and Earth System Sciences, Vol. 21, pp. 779-790. https://doi.org/10.5194/hess-21-779-2017
  51. Vicente-Serrano, S. M., Begueria, S., and Lopez-Moreno, J. I. (2010). "A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index (SPEI)." Journal of Climate, Vol. 23, pp. 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
  52. Vicente-Serrano, S. M., Miralles, D. G., Domínguez-Castro, F., Azorin-Molina, C., Kenawy, A. E., McVicar, T. R., Tomás-Burguera, M., Beguería, S., Maneta, M., and Peña-Gallardo, M. (2018). "Global assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for drought analysis and monitoring." Journal of Climate, Vol. 31, pp. 5371-5393. https://doi.org/10.1175/JCLI-D-17-0775.1
  53. Wilhite, D. A. (2000). Drought as a natural hazard: Concepts and definitions. in D. A. Wilhite, Ed., Drought: A global assessment. Natural Hazards and Disasters Series. Routledge Publishers, U.K.
  54. World Meteorological Organization (WMO) (1992). International meteorological vocabulary. WMO No.182, 2nd ed., pp. 784.
  55. Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D. (2012). "Continentalscale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2(NLDAS-2): 1. Intercomparison and application of model products." Journal of Geophysical Research, Vol. 117, No. D3, D03109.
  56. Yu, M., Cho, Y., Kim, T.-W., and Chae, H.-S. (2018). "Analysis of drought propagationusing hydrometeorological data: from meteorological drought oto agricultual drought." Journal Korea Water Resources Association, Vol. 51, No. 3, pp. 195-205(in Korean with English abstract). https://doi.org/10.3741/JKWRA.2018.51.3.195