Figure 1. 극한환경 점⋅접착 소재의 예와 극한환경용 점⋅접착 소재가 사용되는 여러 분야
Figure 2. 극저온 접착제로 사용되는 고분자의 구조:(a) 에폭시 접착제용 올리고머, (b) 폴리우레탄, (c) 실리콘 고분자.
Figure 3. ASTM E-595법에 따른 TML 및 CVCM 측정 방법[24].
Figure 4. 홍합의 족사는 수중에서 강한 접착력을 만들어내며 족사 단백질을 구성하는 고분자의 카테콜 구조는 다양한 피착제와 잘 결합한다.
Table 1. 극한환경 대응을 위한 접착제의 주요 요구 물성
Table 2. 고온 접착제용 고분자의 화학구조식과 유리전이온도
References
- E. A. S. Marques, L. F. M. D. Silva, M. D. Banea, and R. J. C. Carbas, J. Adhes., 91, 556 (2015). https://doi.org/10.1080/00218464.2014.943395
- J. H. Han, and C. G. Kim, Compos. Struct., 72, 645 (2006).
- E. Grossman, and I. Gouzman, Nucl. Instrum. Methods. Phys. Res. B., 208, 48 (2003). https://doi.org/10.1016/S0168-583X(03)00640-2
- T. M. Mower, Int. J. Adhes. Adhes. 87, 64 (2018). https://doi.org/10.1016/j.ijadhadh.2018.08.009
- M. Zatarain, C. Villasante, A. Sedano, and R. Bueno, CIRP Ann., 53, 345 (2004). https://doi.org/10.1016/S0007-8506(07)60713-6
- J. J. M. Machado, P. M. R. Gamarra, E. A. S. Marques, and L. F. M. da Silva, Compos. Part B-Eng., 138, 243 (2018). https://doi.org/10.1016/j.compositesb.2017.11.038
- 조동철, and 정인우, 극저온 접착제의 특성 및 개발 현황, J. Adhes. Interface, 15, 123 (2014).
- H. M. S. Iqbal, S. Bhowmik, and R. Benedictus, Int. J. Adhes. Adhes., 72, 43 (2017). https://doi.org/10.1016/j.ijadhadh.2016.10.002
- C. P. Yang, G. S. Liou, C. C. Yang,, and K. J. Chen, J. Appl. Polym. Sci., 71, 1691 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990307)71:10<1691::AID-APP16>3.0.CO;2-H
- J. Adduci, L. L. Chapoy, G. Jonsson, J. Kops, and B. M. Shinde, Polym. Eng. Sci., 21, 712 (1981). https://doi.org/10.1002/pen.760211114
- R. F. Hicks, S. E. Babayan, J. Penelon, Q. Truong D. S. F. Cheng, V. V. Le, J. Ghilarducci, A. G. Hsieh, J. M. Deitzel, and Jr. J. W. Gillespie, SAMPE Fall Tehnical Conference Proceedings: Global Advances in Materials and Process Engineering, 1 (2006).
- P. J. Jones, R. D. Cook, C. N. McWright, R. J. Nalty, V. Choudhary, and S. E. Morgan, J. Appl. Polym. Sci., 121, 2945 (2011). https://doi.org/10.1002/app.33852
- M. Son, H. G. Choi, L. Liu, H. S. Park, and H. C. Choi, Environ. Eng. Res., 19, 339 (2014). https://doi.org/10.4491/eer.2014.045
- S. Sasaki, and Y. Hasuda, J. Adhes., 25, 159 (1988). https://doi.org/10.1080/00218468808071257
- High Temperature Adhesives Market - Global Forecast to 2019, Markets and Markets (2019).
- A. S. Clair, and T. S. Clair, Int. J. Adhes. Adhes., 1, 249 (1981). https://doi.org/10.1016/0143-7496(81)90073-7
- R. M. McClitock, and M. J. Hiza, Adv. Cryogenic Eng., 3, 305 (1960).
- C. J. Huang, S. Y. Fu, Y. H. Zhang, B. Lauke, L. F. Li, and L. Ye, Cryogenics, 45, 450 (2005). https://doi.org/10.1016/j.cryogenics.2005.03.003
- S. R. Sandler, and F. R. Berg, J. Appl. Polym. Sci., 9, 3909 (1965). https://doi.org/10.1002/app.1965.070091212
- E. P. Plueddemann, J. Adhes., 2, 184 (1970). https://doi.org/10.1080/0021846708544592
- J. M. Scott, G. M. Wells, and D. C. Phillips, J. Mater. Sci., 15, 1436 (1980). https://doi.org/10.1007/BF00752123
- A. Yoshimura, T. Takaki, Y. Noji, T. Yokozeki, T. Ogasawara, and S. Ogihara, J. Adhes. Sci. Technol., 26, 1017 (2012). https://doi.org/10.1163/156856111X593694
- Emerging Innovations in Adhesive Technologies - Sustainable, Highly Durable, and Cost-effective Adhesives Expected to Rise in Demand Across Applications, Frost&Sullivan (2017).
- ASTM E 595 - 93, Standard Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment, American Society for Testing and Materials (1999).
- R. Pal, S. Sudhi, and R. Raghavan, J. Appl. Polym. Sci., 136, 47520 (2019). https://doi.org/10.1002/app.47520
- A. K. Gupta, K. V. Kurup, J. Santhanam, and P. Vijendran, Vacuum 27, 505 (1967).
- V. Malave, B. Burkiu, B. Riegler, R. Johnson, and R. Thomaier, J. Spacecraft Rockets 48, 235 (2011). https://doi.org/10.2514/1.49476
- A. H. Hofman, I. A. van Hees, J. Yang, and M. Kamperman, Adv. Mater., 30, 1704640 (2017). https://doi.org/10.1002/adma.201704640
- M. J. Sever. J. T. Weisser, J. Monahan, S. Srinivasan, and J. J. Wilker, Angew. Chem. Int. Ed., 43, 448 (2004). https://doi.org/10.1002/anie.200352759
- C. Zhong, T. Gurry, A. A. Cheng, J. Downey, Z. Deng, C. M. Stultz, and T. K. Lu, Nat. Nanotechnol., 9, 858 (2014). https://doi.org/10.1038/nnano.2014.199
- Y. Liu, H. Meng, Z. Qian, N. Fan, W. Choi, F. Zhao, and B. P. Lee, Angew. Chem. Int. Ed., 56, 4224 (2017). https://doi.org/10.1002/anie.201700628
- J. J. Wilker, Angew. Chem. Int. Ed., 49, 8076 (2010). https://doi.org/10.1002/anie.201003171
- M. A. North, C. A. D. Grosso, and J. J. Wilker, ACS Appl. Mater. Interfaces, 9, 7866 (2017). https://doi.org/10.1021/acsami.7b00270
- A. Cholewinski, F. Yang, and B. Zhao, Mater. Horiz., 6, 285 (2019) 285-293. https://doi.org/10.1039/C8MH01421C
- S. Baik, J. Kim, H. J. Lee, T. H. Lee, C. Pang, Adv. Sci., 5, 1800100 (2018). https://doi.org/10.1002/advs.201800100
- S. Chun, D. W. Kim, S. Baik, H. J. Lee, J. H. Lee, S. H. Bhang, and C. Pang, Adv. Funct. Mater., 28, 1805224 (2018). https://doi.org/10.1002/adfm.201805224
- S. Baik, D. W. Kim, Y. Par, T. J. Lee, S. H. Bhang, and C. Pang, Nature 546, 396 (2017). https://doi.org/10.1038/nature22382