DOI QR코드

DOI QR Code

Exercise Detection Method by Using Heart Rate and Activity Intensity in Wrist-Worn Device

손목형 웨어러블 디바이스에서 사람의 심박변화와 활동강도를 이용한 운동 검출 방법

  • Received : 2018.08.27
  • Accepted : 2018.12.21
  • Published : 2019.04.30

Abstract

As interest in wellness grows, There is a lot of research about monitoring individual health using wearable devices. Accordingly, a variety of methods have been studied to distinguish exercise from daily activities using wearable devices. Most of these existing studies are machine learning methods. However, there are problems with over-fitting on individual person's learning, data discontinuously recognition by independent segmenting and fake activity. This paper suggests a detection method for exercise activity based on the physiological response principle of heart rate up and down during exercise. This proposed method calculates activity intensity and heart rate from triaxial and photoplethysmography sensor to determine a heart rate recovery, then detects exercise by estimating activity intensity or detecting a heart rate rising state. Experimental results show that our proposed algorithm has 98.64% of averaged accuracy, 98.05% of averaged precision and 98.62% of averaged recall.

웰니스에 대한 관심이 증대됨에 따라 개인의 건강상태를 웨어러블 디바이스로 모니터링하는 연구들이 늘어나고 있다. 이에 따라 웨어러블 디바이스에서 운동과 일상 활동을 구분하는 다양한 방법들이 연구되어 왔다. 이러한 기존 연구는 대부분 기계학습을 활용한 방식이다. 하지만 개인별 학습 데이터에 의존적인 과적합 문제와 연속적인 사건으로 구성되는 사람의 행동을 독립적으로 취급하여 인식 결과가 중간에 끊기고 오인행동이 생기는 문제가 있다. 이에 본 연구는 운동 시 심박이 오르내리는 생체반응 원리를 기반으로 한 운동 상태 검출 방법을 제안한다. 제안하는 방법은 3축 가속도 센서와 PPG 센서를 통해 활동강도 및 심박 수를 산출하여 심박 회복기를 판단한 후, 활동강도 검사 또는 심박 상승기 검사를 통해 운동 상태를 검출한다. 실험 결과에서 제안하는 알고리즘은 평균 정확도 98.64%, 정밀도 98.05%, 재현율 98.62%로 기존 알고리즘보다 개선된 모습을 보였다.

Keywords

JBCRIN_2019_v8n4_93_f0001.png 이미지

Fig. 1. Overview of Proposed Algorithm

JBCRIN_2019_v8n4_93_f0002.png 이미지

Fig. 2. The Device used in Experiments

JBCRIN_2019_v8n4_93_f0003.png 이미지

Fig. 3. Heart Rate Descending Slope Detection

JBCRIN_2019_v8n4_93_f0004.png 이미지

Fig. 4. Exercise Time Inference by Physical State

JBCRIN_2019_v8n4_93_f0005.png 이미지

Fig. 5. Exercise Time Inference by Physiological State

JBCRIN_2019_v8n4_93_f0006.png 이미지

Fig. 6. Performance Metrics

JBCRIN_2019_v8n4_93_f0007.png 이미지

Fig. 7. Label Graph for Case 1

Table 1. Test Case

JBCRIN_2019_v8n4_93_t0001.png 이미지

Table 2. Confusion Matrix for C4.5

JBCRIN_2019_v8n4_93_t0002.png 이미지

Table 3. Confusion Matrix for k-NN

JBCRIN_2019_v8n4_93_t0003.png 이미지

Table 4. Confusion Matrix for NB

JBCRIN_2019_v8n4_93_t0004.png 이미지

Table 5. Confusion Matrix for MLP

JBCRIN_2019_v8n4_93_t0005.png 이미지

Table 6. Confusion Matrix for SVM

JBCRIN_2019_v8n4_93_t0006.png 이미지

Table 7. Confusion Matrix for Proposed

JBCRIN_2019_v8n4_93_t0007.png 이미지

Table 8. Performance Metrics

JBCRIN_2019_v8n4_93_t0008.png 이미지

Table 9. Standard Deviation in Performance Metrics

JBCRIN_2019_v8n4_93_t0009.png 이미지

References

  1. Miller, James William. "Wellness: The history and development of a concept," Spektrum Freizeit, Vol.27, No.1, pp.84-106, 2005.
  2. Pantelopoulos, Alexandros, and Nikolaos G. Bourbakis, "A survey on wearable sensor-based systems for health monitoring and prognosis," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) Vol.40, No.1, pp.1-12, 2010. https://doi.org/10.1109/TSMCB.2010.2051350
  3. T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, "Wearable photoplethysmographic sensors-past and present," Electronics, Vol.3, No.2, pp.282-302, 2014. https://doi.org/10.3390/electronics3020282
  4. Seung-Hun Park and Dae-Geun Jang, "IT Convergence Trends in Wellness," Communications of the Korean Institute of Information Scientists and Engineers, Vol.31, No.3, pp.61-72, Mar. 2013.
  5. Bao, Ling, and Stephen Intille, "Activity recognition from user-annotated acceleration data," Pervasive Computing, (2004): 1-17.
  6. J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korhonen, "Activity classification using realistic data from wearable sensors," IEEE Transactions on Information Technology in Biomedicine, Vol.10, No.1, pp.119-128, 2006. https://doi.org/10.1109/TITB.2005.856863
  7. U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, "Activity recognition and monitoring using multiple sensors on different body positions," Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on. IEEE, 2006.
  8. L. C. Jatoba, U. Grossmann, C. Kunze, J. Ottenbacher, and W. Stork, "Context-aware mobile health monitoring: Evaluation of different pattern recognition methods for classification of physical activity," Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. IEEE, 2008.
  9. O. D. Lara, A. J. Perez, M. A. Labrador, and J. D. Posada, "Centinela: A human activity recognition system based on acceleration and vital sign data," Pervasive and mobile computing Vol.8, No.5, pp.717-729, 2012. https://doi.org/10.1016/j.pmcj.2011.06.004
  10. E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and R. Friedman, "Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor," Wearable Computers, 2007 11th IEEE International Symposium on. IEEE, 2007.
  11. Altun, Kerem, and Billur Barshan, "Human activity recognition using inertial/magnetic sensor units," International Workshop on Human Behavior Understanding. Springer, Berlin, Heidelberg, 2010.
  12. A. M. Khan, Y. K. Lee, S. Y. Lee, and T. S. Kim, "A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer," IEEE Transactions on Information Technology in Biomedicine, Vol.14, No.5, pp.1166-1172, 2010. https://doi.org/10.1109/TITB.2010.2051955
  13. He, Zhen-Yu, and Lian-Wen Jin, "Activity recognition from acceleration data using AR model representation and SVM," Machine Learning and Cybernetics, 2008 International Conference on. Vol.4. IEEE, 2008.
  14. Z. He, Z. Liu, L. Jin, L. X. Zhen, and J. C. Huang, "Weightlessness featurea novel feature for single tri-axial accelerometer based activity recognition," Pattern Recognition, 2008. ICPR 2008. 19th International Conference on. IEEE, 2008.
  15. He, Zhenyu, and Lianwen Jin, "Activity recognition from acceleration data based on discrete consine transform and SVM," Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on. IEEE, 2009.
  16. Fox, Edward L., Richard W. Bowers, and Merle L. Foss. The physiological basis for exercise and sport. No. Ed. 5. Brown & Benchmark, 1993.
  17. Montoye, H. J., "Circulatory-respiratory fitness," An Introduction to Measurement in Physical Education, Vol.4, pp.41-87, 1970.
  18. S. Mehrang, J. Pietila, J. Tolonen, E. Helander, H. Jimison, M. Pavel, and I. Korhonen, "Human Activity Recognition Using A Single Optical Heart Rate Monitoring Wristband Equipped with Triaxial Accelerometer," EMBEC & NBC 2017. Springer, Singapore, 2017, 587-590.
  19. A. Kamisalic, I. Fister, M. Turkanovic, and S. Karakatic, "Sensors and Functionalities of Non-Invasive Wrist-Wearable Devices: A Review," Sensors, Vol.18, No.6, pp.1714, 2018. https://doi.org/10.3390/s18061714
  20. Serra, Jean, "Biomedical image analysis by mathematical morphology (author's transl)," Pathologie-biologie, Vol.27, No.4, pp.205-207, 1979.
  21. Saltin, Bengt, and Loring B. Rowell, "Functional adaptations to physical activity and inactivity," Federation proceedings, Vol.39. No.5, pp.1506-1513, 1980.
  22. Davies, C. T. M., A. V. Knibbs, and J. Musgrove, "The rate of lactic acid removal in relation to different baselines of recovery exercise," Internationale Zeitschrift fur Angewandte Physiologie Einschliesslich Arbeitsphysiologie, Vol.28, No.3, pp.155-161, 1970.
  23. C. R. Cole, E. H. Blackstone, F. J. Pashkow, C. E. Snader, and M. S. Lauer, "Heart-rate recovery immediately after exercise as a predictor of mortality," New England journal of medicine, Vol.341, No.18, pp.1351-1357, 1999. https://doi.org/10.1056/NEJM199910283411804