DOI QR코드

DOI QR Code

Pore Size Control of a Highly Transparent Interfacial Layer via a Polymer-assisted Approach for Dye-sensitized Solar Cells

  • Lee, Chang Soo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 투고 : 2019.02.03
  • 심사 : 2019.03.27
  • 발행 : 2019.06.01

초록

A highly transparent interfacial layer (HTIL) to enhance the performance of dye-sensitized solar cells (DSSCs) was prepared via a polymer-assisted (PA) approach. Poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom-transfer radical polymerization (ATRP) and was used as a sacrificial template. The PVC-g-POEM graft copolymer induced partial coordination of a hydrophilic titanium isopropoxide (TTIP) sol-gel solution with the POEM domain, resulting in microphase separation, and in turn, the generation of mesopores upon calcination. These phenomena were confirmed using Fourier-transform infrared (FT-IR) spectroscopy, UV-visible light transmittance spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. The DSSCs incorporating HTIL60/20 (consisting of a top layer with a pore size of 60 nm and a bottom layer with a pore size of 20 nm) exhibited the best overall conversion efficiency (6.36%) among the tested samples, which was 25.9% higher than that of a conventional blocking layer (BL). DSSC was further characterized using the Nyquist plot and incident-photon to electron conversion efficiency (IPCE) spectra.

키워드

HHGHHL_2019_v57n3_392_f0002.png 이미지

Scheme 1. Synthesis of PVC-g-POEM via the ATRP process.

HHGHHL_2019_v57n3_392_f0003.png 이미지

Fig. 1. FT-IR spectra of PVC, POEM, PVC-g-POEM 1:1.5, and PVC-g-POEM 1:4.

HHGHHL_2019_v57n3_392_f0004.png 이미지

Scheme 2. Schematic illustration of the preparation of highly transparent interfacial layers (HTILs) for DSSCs via a polymer-assisted (PA) approach, and (b) cross-sectional schematic illustrations of HTIL20, HTIL60, HTIL20/60, and HTIL60/20.

HHGHHL_2019_v57n3_392_f0006.png 이미지

Fig. 2. FE-SEM surface images of (a), (b) HTIL20 and (c), (d) HTIL60 on a FTO glass substrate.

HHGHHL_2019_v57n3_392_f0007.png 이미지

Fig. 3. FE-SEM surface images of (a), (b) HTIL60/20 and (c), (d) HTIL20/60 on a FTO glass substrate.

HHGHHL_2019_v57n3_392_f0008.png 이미지

Fig. 4. TEM images of (a) PVC-g-POEM 1:1.5 and (b) PVC-g-POEM 1:4 in THF/HCl/H2O.

HHGHHL_2019_v57n3_392_f0009.png 이미지

Fig. 5. Cross-sectional FE-SEM images of (a), (b) HTIL20/60 and (c), (d) HTIL60/20, and (e) a photograph of the HTIL samples on FTO glass.

HHGHHL_2019_v57n3_392_f0010.png 이미지

Fig. 6. Cross-sectional FE-SEM images of (a), (b) HTIL20 and (c), (d) HTIL60.

HHGHHL_2019_v57n3_392_f0011.png 이미지

Fig. 7. (a) UV-visible light transmittance spectra and (b) X-ray diffraction patterns of the HTILs on FTO glass.

HHGHHL_2019_v57n3_392_f0012.png 이미지

Fig. 8. (a) Current density-voltage (J-V) curves, (b) Nyquist plots, (c) incident photon-to-current conversion efficiency (IPCE), and (d) normalized IPCE of the HTIL-containing DSSCs.

Table 1. Photovoltaic parameters of the DSSCs containing the HTILs and the conventional BL

HHGHHL_2019_v57n3_392_t0001.png 이미지

참고문헌

  1. Barnham, K. W. J., Mazzer, M. and Clive, B., "Resolving the Energy Crisis: Nuclear or Photovoltaics?," Nat. Mater., 5, 161- 164(2006). https://doi.org/10.1038/nmat1604
  2. Commoner, B., "Poverty of Power: Energy and the Economic Crisis," Knopf Doubleday Publishing Group, New York City, NY(2015).
  3. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P., "Nanowire Dye-sensitized Solar Cells," Nat. Mater., 4(6), 455 (2005). https://doi.org/10.1038/nmat1387
  4. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. and Pettersson, H., "Dye-sensitized Solar Cells," Chem. Rev., 110(11), 6595-6663(2010). https://doi.org/10.1021/cr900356p
  5. O'regan, B. and Grätzel, M., "A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal $TiO_2$ Films," Nature, 353(6346), 737(1991). https://doi.org/10.1038/353737a0
  6. Kim, S. R., Parvez, M. K. and Chhowalla, M., "UV-reduction of Graphene Oxide and Its Application as an Interfacial Layer to Reduce the Back-transport Reactions in Dye-sensitized Solar Cells," Chem. Phys. Lett., 483(1-3), 124-127(2009). https://doi.org/10.1016/j.cplett.2009.10.066
  7. Kim, Y. J., Lee, Y. H., Lee, M. H., Kim, H. J., Pan, J. H., Lim, G. I., Choi, Y. S., Kim, K., Park, N.-G. and Lee, C., "Formation of Efficient Dye-sensitized Solar Cells by Introducing an Interfacial Layer of Long-range Ordered Mesoporous $TiO_2$ Thin Film," Langmuir, 24(22), 13225-13230(2008). https://doi.org/10.1021/la802340g
  8. Ahn, S. H., Jeon, H., Son, K. J., Ahn, H., Koh, W.-G., Ryu, D. Y. and Kim, J. H., "Efficiency Improvement of Dye-sensitized Solar Cells Using Graft Copolymer-templated Mesoporous $TiO_2$ Films as an Interfacial Layer," J. Mater. Chem., 21(6), 1772-1779(2011). https://doi.org/10.1039/C0JM02706E
  9. Park, J. T., Prosser, J. H., Ahn, S. H., Kim, S. J., Kim, J. H. and Lee, D., "Enhancing the Performance of Solid-State Dye-Sensitized Solar Cells Using a Mesoporous Interfacial Titania Layer with a Bragg Stack," Adv. Funct. Mater., 23(17), 2193-2200(2013). https://doi.org/10.1002/adfm.201202345
  10. Ahmad, R., Kim, J. K., Kim, J. H. and Kim, J., "In-situ $TiO_2$ Formation and Performance on Ceramic Membranes in Photocatalytic Membrane Reactor," Membr. J., 27(4), 328-335(2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.328
  11. Kim, N. U., Park, B. J., Park M. S. and Kim, J. H., "Effect of PVP on $CO_2$/$N_2$ Separation Performance of Self-crosslinkable P(GMA-g-PPG)-co-POEM) Membranes," Membr. J., 28(2), 113-120(2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.113
  12. Park, B. J., Kim, N. U., Park, J. T. and Kim, J. H., "Synthesis, Characterizations and Gas Separation Property of PBEM-PMMAPOEM Terpolymer Membranes," Membr. J., 28(2), 121-128(2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.121
  13. Patel, R., Park, J. T., Park, M. S. and Kim, J. H., "Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)- poly(1-vinyl-2-pyrrolidinone) Comb Copolymer," Membr. J., 27(6), 499-505(2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.499
  14. Son, T. Y., Jo, J. W., Kim, J. H., Kim, T. H., Tocci, E. and Nam, S. Y., "Preparation and Gas Characterization of Poly(phenylene oxide) Containing Imidazolium," Membr. J., 27(6), 528-535(2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.528
  15. Shin, J. E. and Park, H. B., "Gas Separation Properties of Microporous Carbon Membranes Containing Mesopores," Membr. J., 28(4), 221-232(2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.4.221
  16. Roh, D. K., Park, J. T., Ahn, S. H., Ahn, H., Ryu, D. Y. and Kim, J. H., "Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) Graft Polymer Electrolytes: Interactions, Nanostructures and Applications to Dye-sensitized Solar Cells," Electrochim. Acta, 55(17), 4976-4981(2010). https://doi.org/10.1016/j.electacta.2010.03.106
  17. Koh, J. H., Lee, K. J., Seo, J. A. and Kim, J. H., "Amphiphilic Polymer Electrolytes Consisting of PVC-g-POEM Comb-like Copolymer and $LiCF_3SO_3$," J. Polym. Sci. B.: Polym. Phys., 47(15), 1443-1451(2009). https://doi.org/10.1002/polb.21745
  18. Ahn, S. H., Koh, J. H., Seo, J. A. and Kim, J. H., "Structure Control of Organized Mesoporous $TiO_2$ Films Templated by Graft Copolymers for Dye-sensitized Solar Cells," Chem. Commun., 46(11), 1935- 1937(2010). https://doi.org/10.1039/b919215h
  19. Burke, J. T., "IR Spectroscopy or Hooke's Law at the Molecular Level - A Joint Freshman Physics-Chemistry Experience," J. Chem. Educ., 74(10), 1213(1997). https://doi.org/10.1021/ed074p1213
  20. Feng, X., Zhu, K., Frank, A. J., Grimes, C. A. and Mallouk, T. E., "Rapid Charge Transport in Dye-sensitized Solar Cells Made from Vertically Aligned Single-crystal Rutile $TiO_2$ Nanowires," Angew. Chem., 124(11), 2781-2784(2012). https://doi.org/10.1002/ange.201108076
  21. Liu, B. and Aydil, E. S., "Growth of Oriented Single-crystalline Rutile $TiO_2$ Nanorods on Transparent Conducting Substrates for Dye-sensitized Solar Cells," J. Am. Chem. Soc., 131(11), 3985- 3990(2009). https://doi.org/10.1021/ja8078972
  22. Wang, H., Bai, Y., Wu, Q., Zhou, W., Zhang, H., Li, J. and Guo, L., "Rutile $TiO_2$ Nano-branched Arrays on FTO for Dye-sensitized Solar Cells," Phys. Chem. Chem. Phys., 13(15), 7008-7013 (2011). https://doi.org/10.1039/c1cp20351g
  23. Yang, J.-S., Liao, W.-P. and Wu, J.-J., "Morphology and Interfacial Energetics Controls for Hierarchical Anatase/rutile $TiO_2$ Nanostructured Array for Efficient Photoelectrochemical Water Splitting," ACS Appl. Mater. Interfaces, 5(15), 7425-7431(2013). https://doi.org/10.1021/am401746b
  24. Li, G., Richter, C. P., Milot, R. L., Cai, L., Schmuttenmaer, C. A., Crabtree, R. H., Brudvig, G. W. and Batista, V. S., "Synergistic Effect Between Anatase and Rutile $TiO_2$ Nanoparticles in Dyesensitized Solar Cells," Dalton Trans., 45, 10078-10085(2009).
  25. Baek, I. C., Vithal, M., Chang, J. A., Yum, J.-H., Nazeeruddin, M. K., Gratzel, M., Chung, Y.-C. and Seok, S. I., "Facile Preparation of Large Aspect Ratio Ellipsoidal Anatase $TiO_2$ Nanoparticles and Their Application to Dye-sensitized Solar Cell," Electrochem. Commun., 11(4), 909-912(2009). https://doi.org/10.1016/j.elecom.2009.02.026