• 제목/요약/키워드: Dye-sensitized solar cell (DSSC)

검색결과 176건 처리시간 0.044초

실외 발전을 위한 염료감응형 태양전지의 봉지재 개발 (Developing Sealing Material of a Dye-Sensitized Solar Cell for Outdoor Power)

  • 기현철;홍경진
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.819-823
    • /
    • 2016
  • DSSC (dye-sensitized solar cell) is expected to be one of the next-generation photovoltaics because of its environment-friendly and low-cost properties. However, commercialization of DSSC is difficult because of the electrolyte leakage. We propose thermal curable base on silicon resin and apply a unit cell and large area ($200{\times}200mm$) dye-sensitized solar cell. The resin aimed at sealing of DSSC and gives a promising resolution for sealing of practical DSSC. In result, the photoelectric conversion efficiency of the unit cell and the module was 6.63% and 5.49%, respectively. In the durability test result, the photoelectric conversion efficiency of the module during 500, 1,000, 1,500 and 2,000 hours was 0.73%, 0.73%, 1.82% and 2.36% respectively. It was confirmed that the photoelectric conversion efficiency characteristics are constant. We have developed encapsulation material of thermal curing method excellent in chemical resistance. A sealing material was applied to the dye-sensitized solar cell and it solved the problem of durability the dye-sensitized solar cell. Sealing material may be applied to verify the possibility of practical application of the dye-sensitized solar cell.

코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지 (Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process)

  • 정홍인;유종렬;박성호
    • Korean Chemical Engineering Research
    • /
    • 제57권1호
    • /
    • pp.111-117
    • /
    • 2019
  • 기상으로 전달된 Ti 전구체가 열 플라즈마에서 고순도의 결정질 코어-$TiO_2$로 합성됨과 동시에 기판에 바로 증착시킬 수 있는 공정을 제시한다. 제조된 코어-$TiO_2$는 외부에 노출되지 않는 상태에서 원자층증착법(Atomic Layer Deposition, ALD)에 의하여 $Al_2O_3$로 코팅된다. 코어-$TiO_2$와 코팅된 쉘-$Al_2O_3$의 형태학적 특징은 transmission electron microscope (TEM) 및 transmission electron microscope - energy dispersive spectroscopy (TEM-EDS)를 통해 분석하였다. 제조된 코어-$TiO_2$/쉘-$Al_2O_3$ 나노입자의 전기적 특성은 염료감응 태양전지(dye-sensitized solar cell, DSSC)의 작동전극에 적용하여 평가하였다. Dynamic light scattering system (DLS), scanning electron microscope (SEM), X-ray Diffraction (XRD)을 통하여 코어-$TiO_2$의 평균입도, 성장속도 및 결정구조의 무게분율을 분석한 결과, 평균입도는 17.1 nm, 코어박막의 두께는 $20.1{\mu}m$이고 주 결정구조가 Anatase로 증착된 코어-$TiO_2$/쉘-$Al_2O_3$ 나노입자를 적용한 DSSC가 기존의 페이스트 방식으로 제작한 DSSC보다 더 높은 광효율을 보여준다. 기존의 페이스트방식을 활용한 DSSC의 에너지변환효율 4.99%에 비하여 선택적으로 조절된 코어-$TiO_2$/쉘-$Al_2O_3$ 나노입자를 작동전극으로 사용한 경우가 6.28%로 26.1% 더 높은 광효율을 보여준다.

염료감응형 태양전지를 위한 산화물반도체 전극에 관한 연구 (A study on the Oxide Semiconductors electrodes for DSSC)

  • 황현석;김형진
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.4925-4929
    • /
    • 2015
  • 염료감응형 태양전지는 기존 실리콘 태양전지에 비하여 가격 경쟁력이 우수하고 안정성이 뛰어나다는 장점으로 인하여 다양한 연구가 진행되고 있으며, 특히 투명 전도막이 없는 염료감응형 태양전지에 대한 연구가 많이 수행되고 있다. 따라서 본 연구에서는 저가형 고효율 염료감응형 태양전지의 구현을 위하여 후막의 다공질 티타늄 전극을 제작하고 특성을 개량코자 하였다. 티타늄 전극의 특성을 평가하기 위하여 FESEM 및 J-V 특성을 평가하였다. 티타늄 전극의 두께를 50nm에서 200nm까지 증가시킨 결과 광전류 밀도의 급격한 변화없이 FF에 주로 영향을 미침을 알 수 있었으며, 티타늄 전극을 활용한 최적 효율의 염료감응형 태양전지의 조건은 150nm 임을 확인할 수 있었다.

물리 기반의 염료 감응형 태양전지 등가회로 모델링 및 성능 분석 (Physical-based Dye-sensitized Solar Cell Equivalent Circuit Modeling and Performance Analysis)

  • 이운복;송준혁;최휘준;구본용;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.67-72
    • /
    • 2023
  • In this paper, a dye-sensitized solar cell (DSSC), one of the representative third-generation solar cells with eco-friendly materials and processes compared to other solar cells, was modeled using MATLAB/Simulink. The simulation was conducted by designating values of series resistance, parallel resistance, light absorption coefficient, and thin film electrode thickness, which are directly related to the efficiency of dye-sensitized solar cells, as arbitrary experimental values. In order to analyze the performance of dye-sensitized solar cells, the optimal value among each parameter experimental value related to efficiency was found using formulas for fill factor (FF) and conversion efficiency.

  • PDF

High Efficiency Dye-Sensitized Solar Cells: From Glass to Plastic Substrate

  • 고민재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.294-294
    • /
    • 2010
  • Over the last decade, dye-sensitized solar cell (DSSC) has attracted much attention due to the high solar-to-electricity conversion efficiency up to 10% as well as low cost compared with p-n junction photovoltaic devices. DSSC is composed of mesoporous TiO2 nanoparticle electrodes coated with photo-sensitized dye, the redox electrolyte and the metal counter electrode. The performances of DSSC are dependent on constituent materials and interface as well as device structure. Replacing the heavy glass substrate with plastic materials is crucial to enlarge DSSC applications for the competition with inorganic based thin film photovoltaic devices. One of the biggest problems with plastic substrates is their low-temperature tolerance, which makes sintering of the photoelectrode films impossible. Therefore, the most important step toward the low-temperature DSSC fabrication is how to enhance interparticle connection at the temperature lower than $150^{\circ}C$. In this talk, the key issues for high efficiency plastic solar cells will be discussed, and several strategies for the improvement of interconnection of nanoparticles and bendability will also be proposed.

  • PDF

염료감응형 태양전지의 $TiO_2$ Layer 다분할 효과에 따른 효율 향상 연구 (Improvement of Efficiency about $TiO_2$ Layer Multi-dividing Effect in Dye-sensitized Solar Cell)

  • 손민규;서현웅;이경준;홍지태;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.425-427
    • /
    • 2008
  • Active area of dye-sensitized solar cell (DSSC) has an effect on the efficiency of DSSC. As the active area increases, the efficiency goes down in a general way. This is caused by the increase of internal resistance in DSSC. The internal resistances are related to various resistant elements. The charge transfer processes at Pt counter electrode and the sheet resistance of TCO are two of these resistant elements. In this study, we try to divide the active area into several small sections in a large sized cell to reduce these two internal resistant elements. As a result, we find out that the fill factor is increased and then the conversion efficiency is improved as the number of dividing active area into several small sections is increased.

  • PDF

염료감응 태양전지용 $TiO_2$ 페이스트의 바인더 유무와 혼합에 따른 광전변환 특성 (Photovoltaic Characteristics of $TiO_2$ Paste for Dye-Sensitized Solar Cell with Binder, Binder-Free and Mixed Binder)

  • 백형열;이호;박경희;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.336-337
    • /
    • 2007
  • The energy conversion characteristics of $TiO_2$ paste of dye-sensitized solar cell (DSSC) was investigated. In the case of DSSC without a binder, the current density increased due to the development of porosity. As for DSSC with a binder, the fill factor increased due to the development of network among the particles. The energy conversion efficiency of 7.2% was obtained due to the porosity and the network as for DSSC with the mixed binder (Vol. 50:50).

  • PDF

장 파장 대 태양광을 흡수하는 염료감응형태양전지에 대한 염료와 합성 (Synthesis and Photovoltaic Performance of Long Wavelength Absorption Dyes for the Dye Sensitized Solar Cell)

  • 김상아;윤주영;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.89.2-89.2
    • /
    • 2010
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of $TiO_2$ are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

NIR 흡수 염료를 이용한 염료감응형 태양전지 (Synthesis and Photovoltaic Performance of NIR Absorption Dyes for the Dye Sensitized Solar Cell)

  • 김상아;정미란;이민경;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.118.1-118.1
    • /
    • 2011
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of TiO2 are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

Methods to Improve Light Harvesting Efficiency in Dye-Sensitized Solar Cells

  • Park, Nam-Gyu
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권2호
    • /
    • pp.69-74
    • /
    • 2010
  • Methodologies to improve photovoltaic performance of dye-sensitized solar cell (DSSC) are reviewed. DSSC is usually composed of a dye-adsorbed $TiO_2$ photoanode, a tri-iodide/iodide redox electrolyte and a Pt counter electrode. Among the photovoltaic parameters of short-circuit photocurrent density, open-circuit voltage and fill factor, short-circuit photocurrent density is the collective measure of light harvesting, charge separation and charge collection efficiencies. Internal quantum efficiency is known to reach almost 100%, which indicates that charge separation occurs without loss by recombination. Thus, light harvesting efficiency plays an important role in improvement of photocurrent. In this paper, technologies to improve light harvesting efficiency, including surface area improvement by nano-dispersion, size-dependent light scattering efficiency, bi-functional nano material, panchromatic absorption by selective positioning of three different dyes and transparent conductive oxide (TCO)-less DSSC, are introduced.