DOI QR코드

DOI QR Code

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh (Department of machine and Equipment, Industrial University of Ho Chi Minh City) ;
  • Gil, Hyo Sun (Department of Chemical and Bio Engineering, Gachon University) ;
  • Das, Gautam (Department of Chemical and Bio Engineering, Gachon University) ;
  • Kim, Bo Hyun (Department of Chemical and Bio Engineering, Gachon University) ;
  • Yoon, Hyon Hee (Department of Chemical and Bio Engineering, Gachon University)
  • Received : 2019.01.21
  • Accepted : 2019.03.28
  • Published : 2019.06.01

Abstract

A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.

Keywords

HHGHHL_2019_v57n3_387_f0001.png 이미지

Fig. 1. XRD patterns (a) and Raman spectra (b) of MIL-101 and Ni@MIL-101.

HHGHHL_2019_v57n3_387_f0002.png 이미지

Fig. 2. SEM (a), cross-sectional FIB-SEM (b), TEM (c) images, and (d) EDX spectrum of as synthesized Ni@MIL-101 particles.

HHGHHL_2019_v57n3_387_f0003.png 이미지

Fig. 3. N2 sorption isotherm (a), and pore size distribution (b) of MIL-101 and Ni@MIL-101.

HHGHHL_2019_v57n3_387_f0004.png 이미지

Fig. 4. (a) CV curves of Ni@MIL-101 recorded in the absence (black) and presence of 0.1 M urea (red) in 0.1 M KOH at scan rate of 10 mV s-1, and (b) chronoamperometric responses of MIL-101, and Ni@MIL-101 in 0.1 M urea in 0.1 M KOH at 0.6 V.

HHGHHL_2019_v57n3_387_f0005.png 이미지

Fig. 5. I-V and power density curves of a urea/H2O2 cell with Ni@ MIL-101 as anode at 0.3 M urea in 1 M KOH at 70 ℃.

References

  1. Lan, R., Tao, S. and Irvine, J. T. S., "A Direct Urea Fuel Cell- Power From Fertiliser and Waste," Energy Environ. Sci. 3, 438- 441(2010). https://doi.org/10.1039/b924786f
  2. Xu, W., Zhang, H., Li, G. and Wu, Z., "Nickel-cobalt Bimetallic Anode Catalysts for Direct Urea Fuel Cell," Sci. Rep. 4, 5863 (2014). https://doi.org/10.1038/srep05863
  3. Guo, F., Cao, D., Du, M., Ye, K., Wang, G., Zhang, W., Gao, Y. and Cheng, K., "Enhancement of Direct Urea-hydrogen Peroxide Fuel Cell Performance by Three-dimensional Porous Nickelcobalt Anode," J. Power Sources, 307, 697-704(2016). https://doi.org/10.1016/j.jpowsour.2016.01.042
  4. Ye, K., Wang, G., Cao, D. and Wang, G., "Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis," Topics in Current Chemistry, 376, 42(2018). https://doi.org/10.1007/s41061-018-0219-y
  5. Xu, W., Wu, Z. and Tao, S., "Urea-Based Fuel Cells and Electrocatalysts for Urea Oxidation," Energy Technol. 4, 1-10(2016). https://doi.org/10.1002/ente.201500354
  6. Yan, W., Wang, D. and Botte, G. G., "Electrochemical Decomposition of Urea with Ni-based Catalysts," Appl Catal B-Environ. 127, 221-226(2012). https://doi.org/10.1016/j.apcatb.2012.08.022
  7. Wang, L., Du, T., Cheng, J., Xie, X., Yang, B. and Li, M., "Enhanced Activity of Urea Electrooxidation on Nickel Catalysts Supported on Tungsten Carbides/carbon Nanotubes," J. Power Sources, 280, 550-554(2015). https://doi.org/10.1016/j.jpowsour.2015.01.141
  8. Shi, W., Ding, R., Li, X., Xu, Q. and Liu, E., "Enhanced Performance and Electrocatalytic Kinetics of Ni-Mo/Graphene Nanocatalysts Towards Alkaline Urea Oxidation Reaction," Electrochim. Acta. 242, 247-259(2017). https://doi.org/10.1016/j.electacta.2017.05.002
  9. Kumar, R. and Schechter, A., "Electroactivity of Urea Oxidation on NiCr Catalysts in Alkaline Electrolyte," ChemCatChem. 9, 3374- 3379(2017). https://doi.org/10.1002/cctc.201700451
  10. Xu, W., Du, D., Lan, R., Humphreys, J. and Wu, Z.,"Highly Active Ni-Fe Double Hydroxides as Anode Catalysts for Electrooxidation of Urea," New J. Chem. 41, 4190-4196(2017). https://doi.org/10.1039/C6NJ04060H
  11. Hameed, R. M. A. and Medany, S. S., "Influence of Support Material on the Electrocatalytic Activity of Nickel Oxide Nanoparticles for Urea Electro-oxidation Reaction," J. Colloid Interface Sci., 513, 536-548(2018). https://doi.org/10.1016/j.jcis.2017.11.032
  12. Nguyen, N. S., Das, G. and Yoon, H. H., "Nickel/cobalt Oxidedecorated 3D Graphene Nanocomposite Electrode for Enhanced Electrochemical Detection of Urea," Biosen. Bioelectron., 77, 372- 377(2016). https://doi.org/10.1016/j.bios.2015.09.046
  13. Das, G., Tesfaye, R. M., Won, Y. and Yoon, H. H., "NiO-$Fe_2O_3$ Based Graphene Aerogel as Urea Electrooxidation Catalyst," Electrochim. Acta, 237, 171-176(2017). https://doi.org/10.1016/j.electacta.2017.03.197
  14. Barakat, N. A. M., El-Newehy, M. H., Yasin, A. S., Ghouri, Z. K. and Al-Deyab, S. S., "Ni&Mn Nanoparticles-decorated Carbon Nanofibers as Effective Electrocatalyst for Urea Oxidation," Appl. Catal. A-Gen., 510, 180-188(2016). https://doi.org/10.1016/j.apcata.2015.11.015
  15. Bhattacharjee, S., Chen, C. and Ahn, W. S., "Chromium Terephthalate Metal-organic Framework MIL-101: Synthesis, Functionalization, and Applications for Adsorption and Catalysis," RSC Adv., 4, 52500-52525(2014). https://doi.org/10.1039/C4RA11259H
  16. Sabouni, R., Kazemian, H. and Rohani, S., "Carbon Dioxide Adsorption in Microwave-synthesized Metal Organic Framework CPM-5: Equilibrium and Kinetics Study," Microporous Mesoporous Mater., 175, 85-91(2013). https://doi.org/10.1016/j.micromeso.2013.03.024
  17. Mishra, P., Mekala, S., Dreisbach, F., Mandal, B. and Gumma, S., "Adsorption of $CO_2$, CO, $CH_4$ and $N_2$ on a Zinc Based Metal Organic Framework," Sep. Purif. Technol., 94, 124-130(2012). https://doi.org/10.1016/j.seppur.2011.09.041
  18. Li, W., Liu, J. and Zhao, D., "Mesoporous Materials for Energy Conversion and Storage Devices," Nat. Rev. Mater., 1, 16023-16040(2016). https://doi.org/10.1038/natrevmats.2016.23
  19. Hibino, T., Kobayashi, K., Ito, M., Nagao, M., Fukui, M. and Teranishi, S., "Direct Electrolysis of Waste Newspaper for Sustainable Hydrogen Production: An Oxygen-functionalized Porous Carbon Anode," Appl. Catal. B-Environ. 231, 191-199(2018). https://doi.org/10.1016/j.apcatb.2018.03.021
  20. Ferey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble, S. and Margiolaki, I., "A Chromium Terephthalate-based Solid with Unusually Large Pore Volumes and Surface Area," Science, 309, 2040-2042(2005). https://doi.org/10.1126/science.1116275
  21. Montazerolghaem, M., Aghamiri, S. F., Tangestaninejad, S. and Talaie, M. R., "A Metal-organic Framework MIL-101 Doped with Metal Nanoparticles (Ni & Cu) and Its Effect on $CO_2$ Adsorption Properties," RSC Adv., 6, 632-640(2016). https://doi.org/10.1039/C5RA22450K
  22. Jiang, D., Burrows, A. D. and Edler, K. J., "Size-controlled Synthesis of MIL-101(Cr) Nanoparticles with Enhanced Selectivity for $CO_2$ over $N_2$," CrystEngComm., 13, 6916-6919(2011). https://doi.org/10.1039/c1ce06274c
  23. Kenarsari, S. D., Yang, D., Jiang, G., Zhang, S., Wang, J., Russell, A. G., Wei, Q. and Fan, M., "Review of Recent Advances in Carbon Dioxide Separation and Capture," RSC Adv., 3, 22739- 22773(2013). https://doi.org/10.1039/c3ra43965h
  24. Sumida, K, Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. and Long, J. R., "Carbon Dioxide Capture in Metal-organic Frameworks," Chem. Rev., 112, 724- 781(2012). https://doi.org/10.1021/cr2003272
  25. Moon, H. R., Lim, D. W. and Suh, M. P., "Fabrication of Metal Nanoparticles in Metal-organic Frameworks," Chem. Soc. Rev. 42, 1807-1824(2013). https://doi.org/10.1039/C2CS35320B
  26. Saha, D. and Deng, H., "Hydrogen Adsorption on Ordered Mesoporous Carbons Doped with Pd, Pt, Ni, and Ru," Langmuir, 25, 12550-12560(2009). https://doi.org/10.1021/la901749r
  27. Tran, T. Q. N., Das, G. and Yoon, H. H., "Nickel-metal Organic Framework/MWCNT Composite Electrode for Non-enzymatic Urea Detection," Sensors and Actuators, B: Chemical. 243, 78- 83(2017). https://doi.org/10.1016/j.snb.2016.11.126
  28. Vedharathinam, V. and Botte, G. G., "Understanding the Electrocatalytic Oxidation Mechanism of Urea on Nickel Electrodes in Alkaline Medium," Electrochimica Acta. 81, 292-300(2012). https://doi.org/10.1016/j.electacta.2012.07.007
  29. Lan, R. and Tao, S., "Preparation of Nano-sized Nickel as Anode Catalyst for Direct Urea and Urine Fuel Cells," J. Power Sources, 196, 5021-5026(2011). https://doi.org/10.1016/j.jpowsour.2011.02.015