Fig. 1. XRD patterns (a) and Raman spectra (b) of MIL-101 and Ni@MIL-101.
Fig. 2. SEM (a), cross-sectional FIB-SEM (b), TEM (c) images, and (d) EDX spectrum of as synthesized Ni@MIL-101 particles.
Fig. 3. N2 sorption isotherm (a), and pore size distribution (b) of MIL-101 and Ni@MIL-101.
Fig. 4. (a) CV curves of Ni@MIL-101 recorded in the absence (black) and presence of 0.1 M urea (red) in 0.1 M KOH at scan rate of 10 mV s-1, and (b) chronoamperometric responses of MIL-101, and Ni@MIL-101 in 0.1 M urea in 0.1 M KOH at 0.6 V.
Fig. 5. I-V and power density curves of a urea/H2O2 cell with Ni@ MIL-101 as anode at 0.3 M urea in 1 M KOH at 70 ℃.
References
- Lan, R., Tao, S. and Irvine, J. T. S., "A Direct Urea Fuel Cell- Power From Fertiliser and Waste," Energy Environ. Sci. 3, 438- 441(2010). https://doi.org/10.1039/b924786f
- Xu, W., Zhang, H., Li, G. and Wu, Z., "Nickel-cobalt Bimetallic Anode Catalysts for Direct Urea Fuel Cell," Sci. Rep. 4, 5863 (2014). https://doi.org/10.1038/srep05863
- Guo, F., Cao, D., Du, M., Ye, K., Wang, G., Zhang, W., Gao, Y. and Cheng, K., "Enhancement of Direct Urea-hydrogen Peroxide Fuel Cell Performance by Three-dimensional Porous Nickelcobalt Anode," J. Power Sources, 307, 697-704(2016). https://doi.org/10.1016/j.jpowsour.2016.01.042
- Ye, K., Wang, G., Cao, D. and Wang, G., "Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis," Topics in Current Chemistry, 376, 42(2018). https://doi.org/10.1007/s41061-018-0219-y
- Xu, W., Wu, Z. and Tao, S., "Urea-Based Fuel Cells and Electrocatalysts for Urea Oxidation," Energy Technol. 4, 1-10(2016). https://doi.org/10.1002/ente.201500354
- Yan, W., Wang, D. and Botte, G. G., "Electrochemical Decomposition of Urea with Ni-based Catalysts," Appl Catal B-Environ. 127, 221-226(2012). https://doi.org/10.1016/j.apcatb.2012.08.022
- Wang, L., Du, T., Cheng, J., Xie, X., Yang, B. and Li, M., "Enhanced Activity of Urea Electrooxidation on Nickel Catalysts Supported on Tungsten Carbides/carbon Nanotubes," J. Power Sources, 280, 550-554(2015). https://doi.org/10.1016/j.jpowsour.2015.01.141
- Shi, W., Ding, R., Li, X., Xu, Q. and Liu, E., "Enhanced Performance and Electrocatalytic Kinetics of Ni-Mo/Graphene Nanocatalysts Towards Alkaline Urea Oxidation Reaction," Electrochim. Acta. 242, 247-259(2017). https://doi.org/10.1016/j.electacta.2017.05.002
- Kumar, R. and Schechter, A., "Electroactivity of Urea Oxidation on NiCr Catalysts in Alkaline Electrolyte," ChemCatChem. 9, 3374- 3379(2017). https://doi.org/10.1002/cctc.201700451
- Xu, W., Du, D., Lan, R., Humphreys, J. and Wu, Z.,"Highly Active Ni-Fe Double Hydroxides as Anode Catalysts for Electrooxidation of Urea," New J. Chem. 41, 4190-4196(2017). https://doi.org/10.1039/C6NJ04060H
- Hameed, R. M. A. and Medany, S. S., "Influence of Support Material on the Electrocatalytic Activity of Nickel Oxide Nanoparticles for Urea Electro-oxidation Reaction," J. Colloid Interface Sci., 513, 536-548(2018). https://doi.org/10.1016/j.jcis.2017.11.032
- Nguyen, N. S., Das, G. and Yoon, H. H., "Nickel/cobalt Oxidedecorated 3D Graphene Nanocomposite Electrode for Enhanced Electrochemical Detection of Urea," Biosen. Bioelectron., 77, 372- 377(2016). https://doi.org/10.1016/j.bios.2015.09.046
-
Das, G., Tesfaye, R. M., Won, Y. and Yoon, H. H., "NiO-
$Fe_2O_3$ Based Graphene Aerogel as Urea Electrooxidation Catalyst," Electrochim. Acta, 237, 171-176(2017). https://doi.org/10.1016/j.electacta.2017.03.197 - Barakat, N. A. M., El-Newehy, M. H., Yasin, A. S., Ghouri, Z. K. and Al-Deyab, S. S., "Ni&Mn Nanoparticles-decorated Carbon Nanofibers as Effective Electrocatalyst for Urea Oxidation," Appl. Catal. A-Gen., 510, 180-188(2016). https://doi.org/10.1016/j.apcata.2015.11.015
- Bhattacharjee, S., Chen, C. and Ahn, W. S., "Chromium Terephthalate Metal-organic Framework MIL-101: Synthesis, Functionalization, and Applications for Adsorption and Catalysis," RSC Adv., 4, 52500-52525(2014). https://doi.org/10.1039/C4RA11259H
- Sabouni, R., Kazemian, H. and Rohani, S., "Carbon Dioxide Adsorption in Microwave-synthesized Metal Organic Framework CPM-5: Equilibrium and Kinetics Study," Microporous Mesoporous Mater., 175, 85-91(2013). https://doi.org/10.1016/j.micromeso.2013.03.024
-
Mishra, P., Mekala, S., Dreisbach, F., Mandal, B. and Gumma, S., "Adsorption of
$CO_2$ , CO,$CH_4$ and$N_2$ on a Zinc Based Metal Organic Framework," Sep. Purif. Technol., 94, 124-130(2012). https://doi.org/10.1016/j.seppur.2011.09.041 - Li, W., Liu, J. and Zhao, D., "Mesoporous Materials for Energy Conversion and Storage Devices," Nat. Rev. Mater., 1, 16023-16040(2016). https://doi.org/10.1038/natrevmats.2016.23
- Hibino, T., Kobayashi, K., Ito, M., Nagao, M., Fukui, M. and Teranishi, S., "Direct Electrolysis of Waste Newspaper for Sustainable Hydrogen Production: An Oxygen-functionalized Porous Carbon Anode," Appl. Catal. B-Environ. 231, 191-199(2018). https://doi.org/10.1016/j.apcatb.2018.03.021
- Ferey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble, S. and Margiolaki, I., "A Chromium Terephthalate-based Solid with Unusually Large Pore Volumes and Surface Area," Science, 309, 2040-2042(2005). https://doi.org/10.1126/science.1116275
-
Montazerolghaem, M., Aghamiri, S. F., Tangestaninejad, S. and Talaie, M. R., "A Metal-organic Framework MIL-101 Doped with Metal Nanoparticles (Ni & Cu) and Its Effect on
$CO_2$ Adsorption Properties," RSC Adv., 6, 632-640(2016). https://doi.org/10.1039/C5RA22450K -
Jiang, D., Burrows, A. D. and Edler, K. J., "Size-controlled Synthesis of MIL-101(Cr) Nanoparticles with Enhanced Selectivity for
$CO_2$ over$N_2$ ," CrystEngComm., 13, 6916-6919(2011). https://doi.org/10.1039/c1ce06274c - Kenarsari, S. D., Yang, D., Jiang, G., Zhang, S., Wang, J., Russell, A. G., Wei, Q. and Fan, M., "Review of Recent Advances in Carbon Dioxide Separation and Capture," RSC Adv., 3, 22739- 22773(2013). https://doi.org/10.1039/c3ra43965h
- Sumida, K, Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. and Long, J. R., "Carbon Dioxide Capture in Metal-organic Frameworks," Chem. Rev., 112, 724- 781(2012). https://doi.org/10.1021/cr2003272
- Moon, H. R., Lim, D. W. and Suh, M. P., "Fabrication of Metal Nanoparticles in Metal-organic Frameworks," Chem. Soc. Rev. 42, 1807-1824(2013). https://doi.org/10.1039/C2CS35320B
- Saha, D. and Deng, H., "Hydrogen Adsorption on Ordered Mesoporous Carbons Doped with Pd, Pt, Ni, and Ru," Langmuir, 25, 12550-12560(2009). https://doi.org/10.1021/la901749r
- Tran, T. Q. N., Das, G. and Yoon, H. H., "Nickel-metal Organic Framework/MWCNT Composite Electrode for Non-enzymatic Urea Detection," Sensors and Actuators, B: Chemical. 243, 78- 83(2017). https://doi.org/10.1016/j.snb.2016.11.126
- Vedharathinam, V. and Botte, G. G., "Understanding the Electrocatalytic Oxidation Mechanism of Urea on Nickel Electrodes in Alkaline Medium," Electrochimica Acta. 81, 292-300(2012). https://doi.org/10.1016/j.electacta.2012.07.007
- Lan, R. and Tao, S., "Preparation of Nano-sized Nickel as Anode Catalyst for Direct Urea and Urine Fuel Cells," J. Power Sources, 196, 5021-5026(2011). https://doi.org/10.1016/j.jpowsour.2011.02.015