Fig. 1. Chemisorption features of the catalysts and supports.
Fig. 2. SEM images of the prepared catalysts: (a) NiMo/Al2O3; (b) CoMo/Al2O3; (c) NiFe/HBeta; (d) NiFe/Zeolite Y; (e) NiFe/ZSM-5.
Fig. 3. Surface morphology of fresh and used catalysts: (a) fresh NiMo/Al2O3; (b) used NiMo/Al2O3; (c) fresh NiFe/HBeta; (d) used NiFe/HBeta.
Fig. 4. XRD peaks of the catalysts.
Fig. 5. Van Krevelen diagram of the heavy oil.
Table 1. Characterization of supports and bifunctional catalysts
Table 2. Mass balance of main products with different HDO temperature (25 wt% of ethanol)
Table 3. Mass balance of main products with different ethanol concentration (under 350 °C)
Table 4. Physicochemical properties of the heavy oils with 25 wt% of ethanol
Table 5. Physicochemical properties of the heavy oils under 350 °C
Table 6. Chemical distributions of heavy oil (350 °C, 25 wt% ethanol)
References
-
Ardiyanti, A., Khromova, S., Venderbosch, R., Yakovlev, V., Heeres, H. 2012. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a
${\delta}$ -Al2O3 support. Applied Catalysis B: Environmental 117: 105-117. - Blakeman, P.G., Burkholder, E.M., Chen, H.-Y., Collier, J.E., Fedeyko, J.M., Jobson, H., Rajaram, R.R. 2014. The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts. Catalysis Today 231: 56-63. https://doi.org/10.1016/j.cattod.2013.10.047
- Bredenberg, J.-S., Huuska, M., Raty, J., Korpio, M. 1982. Hydrogenolysis and hydrocracking of the carbon-oxygen bond: I. Hydrocracking of some simple aromatic O-compounds. Journal of Catalysis 77(1): 242-247. https://doi.org/10.1016/0021-9517(82)90164-6
- Bridgwater, A.V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy 38: 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048
- Bui, V.N., Laurenti, D., Afanasiev, P., Geantet, C. 2011a. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity. Applied Catalysis B: Environmental 101(3-4): 239-245. https://doi.org/10.1016/j.apcatb.2010.10.025
- Bui, V.N., Laurenti, D., Delichere, P., Geantet, C. 2011b. Hydrodeoxygenation of guaiacol: Part II:Support effect for CoMoS catalysts on HDO activity and selectivity. Applied Catalysis B: Environmental 101(3-4): 246-255. https://doi.org/10.1016/j.apcatb.2010.10.031
- Centeno, A., Laurent, E., Delmon, B. 1995. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. Journal of Catalysis 154(2): 288-298. https://doi.org/10.1006/jcat.1995.1170
- Chen, D., Rebo, H., Moljord, K., Holmen, A. 1997. Influence of coke deposition on selectivity in zeolite catalysis. Industrial & engineering chemistry research 36(9): 3473-3479. https://doi.org/10.1021/ie9700223
- Chiaramonti, D., Prussi, M., Buffi, M., Rizzo, A. M., Pari, L. 2017. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Applied Energy 185: 963-972. https://doi.org/10.1016/j.apenergy.2015.12.001
- Choudhary, T., Phillips, C. 2011. Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A:General 397(1-2): 1-12. https://doi.org/10.1016/j.apcata.2011.02.025
- Elliott, D.C., Hart, T.R. 2008. Catalytic hydroprocessing of chemical models for bio-oil. Energy & Fuels 23(2): 631-637. https://doi.org/10.1021/ef8007773
- Ferrari, M., Bosmans, S., Maggi, R., Delmon, B., Grange, P. 2001. CoMo/carbon hydrodeoxygenation catalysts: influence of the hydrogen sulfide partial pressure and of the sulfidation temperature. Catalysis Today 65(2-4): 257-264. https://doi.org/10.1016/S0920-5861(00)00559-9
- Friedl, A., Padouvas, E., Rotter, H., Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta 544(1): 191-198. https://doi.org/10.1016/j.aca.2005.01.041
- Furimsky, E., Mikhlin, J., Jones, D., Adley, T., Baikowitz, H. 1986. On the mechanism of hydrodeoxygenation of ortho substituted phenols. The Canadian Journal of Chemical Engineering 64(6):982-985. https://doi.org/10.1002/cjce.5450640615
- Gonzalez-Borja, M.A., Resasco, D. E. 2011. Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts. Energy & Fuels 25(9): 4155-4162. https://doi.org/10.1021/ef200728r
-
Hirano, T., Hirata, R., Fujinuma, Y., Saigusa, N., Yamamoto, S., Harazono, Y., Takada, M., Inukai, K., Inoue, G. 2003.
$CO_2$ and water vapor exchange of a larch forest in northern Japan. Tellus B:Chemical and Physical Meteorology 55(2): 244-257. https://doi.org/10.1034/j.1600-0889.2003.00063.x - Huber, G.W., Iborra, S., Corma, A. 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical reviews 106(9): 4044-4098. https://doi.org/10.1021/cr068360d
- Hunter, B.M., Hieringer, W., Winkler, J., Gray, H., Muller, A. 2016. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science 9(5): 1734-1743. https://doi.org/10.1039/C6EE00377J
- Kim, Y.S. 2016. Current Status and Prospects on Biofuel Conversion Technologies and Facilities, Using Lignocellulosic Biomass. Journal of the Korean Wood Science and Technology 44(5): 622-628. https://doi.org/10.5658/WOOD.2016.44.5.622
- Lee, J.H., Moon, J.G., Choi, I.G., Choi, J.W. 2016. Study on The Thermochemical Degradation Features of Empty Fruit Bunch on The Function of Pyrolysis Temperature. Journal of the Korean Wood Science and Technology 44(3): 350-359. https://doi.org/10.5658/WOOD.2016.44.3.350
-
Laurent, E., Delmon, B. 1994a. Influence of water in the deactivation of a sulfided NiMo
${\gamma}$ -$Al_2O_3$ catalyst during hydrodeoxygenation. Journal of Catalysis 146(1): 281-291. https://doi.org/10.1016/0021-9517(94)90032-9 -
Laurent, E., Delmon, B. 1994b. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/
${\gamma}$ -$Al_2O_3$ and NiMo/${\gamma}$ -$Al_2O_3$ catalysts: I. Catalytic reaction schemes. Applied Catalysis A: General 109(1): 77-96. https://doi.org/10.1016/0926-860X(94)85004-6 -
Liang, N., Nakadai, T., Hirano, T., Qu, L., Koike, T., Fujinuma, Y., Inoue, G. 2004. In situ comparison of four approaches to estimating soil
$CO_2$ efflux in a northern larch (Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology 123(1-2):97-117. https://doi.org/10.1016/j.agrformet.2003.10.002 - Lippens, B.C., De Boer, J. 1965. Studies on pore systems in catalysts: V. The t method. Journal of Catalysis 4(3): 319-323. https://doi.org/10.1016/0021-9517(65)90307-6
- Long, J., Xu, Y., Wang, T., Yuan, Z., Shu, R., Zhang, Q., Ma, L. 2015. Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Applied Energy 141: 70-79. https://doi.org/10.1016/j.apenergy.2014.12.025
- Lu, Q., Li, W.-Z., Zhu, X.-F. 2009. Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management 50(5): 1376-1383. https://doi.org/10.1016/j.enconman.2009.01.001
- Moon, J.G., Hwang, H., Lee, J.H., Choi, I.G., Choi, J.W. 2016. Effect of Inorganic Constituents Existing in Empty Fruit Bunch (EFB) on Features of Pyrolysis Products. Journal of the Korean Wood Science and Technology 44(5): 629-638 https://doi.org/10.5658/WOOD.2016.44.5.629
- Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., Knudsen, K., Jensen, A.D. 2011. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General 407(1-2): 1-19. https://doi.org/10.1016/j.apcata.2011.08.046
- Munnik, P., de Jongh, P.E., de Jong, K.P. 2015. Recent developments in the synthesis of supported catalysts. Chemical reviews 115(14): 6687-6718. https://doi.org/10.1021/cr500486u
- Nimmanwudipong, T., Runnebaum, R.C., Block, D.E., Gates, B.C. 2011a. Catalytic conversion of guaiacol catalyzed by platinum supported on alumina:Reaction network including hydrodeoxygenation reactions. Energy & Fuels 25(8): 3417-3427. https://doi.org/10.1021/ef200803d
- Nimmanwudipong, T., Runnebaum, R.C., Block, D.E., Gates, B.C. 2011b. Catalytic reactions of guaiacol:reaction network and evidence of oxygen removal in reactions with hydrogen. Catalysis letters 141(6):779-783. https://doi.org/10.1007/s10562-011-0576-4
-
Nimmanwudipong, T., Runnebaum, R.C., Ebeler, S.E., Block, D.E., Gates, B.C. 2012. Upgrading of ligninderived compounds: reactions of eugenol catalyzed by HY zeolite and by Pt/
${\gamma}-Al_2O_3$ . Catalysis letters 142(2): 151-160. https://doi.org/10.1007/s10562-011-0759-z - Ochoa-Hernandez, C., Yang, Y., Pizarro, P., Victor, A., Coronado, J.M., Serrano, D.P. 2013. Hydrocarbons production through hydrotreating of methyl esters over Ni and Co supported on SBA-15 and Al-SBA-15. Catalysis today 210: 81-88. https://doi.org/10.1016/j.cattod.2012.12.002
- Oh, S., Choi, H.S., Choi, I.-G., Choi, J.W. 2017. Evaluation of hydrodeoxygenation reactivity of pyrolysis bio-oil with various Ni-based catalysts for improvement of fuel properties. RSC Advances 7(25): 15116-15126. https://doi.org/10.1039/C7RA01166K
- Ohta, H., Yamamoto, K., Hayashi, M., Hamasaka, G., Uozumi, Y., Watanabe, Y. 2015. Low temperature hydrodeoxygenation of phenols under ambient hydrogen pressure to form cyclohexanes catalysed by Pt nanoparticles supported on H-ZSM-5. Chemical Communications 51(95): 17000-17003. https://doi.org/10.1039/C5CC05607A
-
Olcese, R., Bettahar, M., Petitjean, D., Malaman, B., Giovanella, F., Dufour, A. 2012. Gas-phase hydrodeoxygenation of guaiacol over Fe/
$SiO_2$ catalyst. Applied Catalysis B: Environmental 115: 63-73. - Prajitno, H., Insyani, R., Park, J., Ryu, C., Kim, J. 2016. Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil. Applied Energy 172: 12-22. https://doi.org/10.1016/j.apenergy.2016.03.093
- Shemfe, M., Gu, S., Fidalgo, B. 2017. Techno-economic analysis of biofuel production via bio-oil zeolite upgrading: An evaluation of two catalyst regeneration systems. Biomass and Bioenergy 98:182-193. https://doi.org/10.1016/j.biombioe.2017.01.020
- Wen, J.-L., Sun, S.-L., Yuan, T.-Q., Xu, F., Sun, R.-C. 2014. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Applied Energy 121: 1-9. https://doi.org/10.1016/j.apenergy.2014.02.001
- Wildschut, J., Mahfud, F.H., Venderbosch, R.H., Heeres, H.J. 2009. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Industrial & Engineering Chemistry Research 48(23): 10324-10334. https://doi.org/10.1021/ie9006003
- Yakovlev, V., Khromova, S., Sherstyuk, O., Dundich, V., Ermakov, D.Y., Novopashina, V., Lebedev, M. Y., Bulavchenko, O., Parmon, V. 2009. Development of new catalytic systems for upgraded biofuels production from bio-crude-oil and biodiesel. Catalysis Today 144(3-4): 362-366. https://doi.org/10.1016/j.cattod.2009.03.002
- Yao, G., Wu, G., Dai, W., Guan, N., Li, L. 2015. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions. Fuel 150: 175-183. https://doi.org/10.1016/j.fuel.2015.02.035
- Zakzeski, J., Bruijnincx, P.C., Jongerius, A.L., Weckhuysen, B.M. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chemical reviews 110(6): 3552-3599. https://doi.org/10.1021/cr900354u
- Zhang, W., Yu, D., Ji, X., Huang, H. 2012. Efficient dehydration of bio-based 2, 3-butanediol to butanone over boric acid modified HZSM-5 zeolites. Green chemistry 14(12): 3441-3450. https://doi.org/10.1039/c2gc36324k
- Zhang, X., Tang, W., Zhang, Q., Wang, T., Ma, L. 2018. Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. Applied Energy 227: 73-79. https://doi.org/10.1016/j.apenergy.2017.08.078
-
Zhang, X., Zhang, Q., Wang, T., Ma, L., Yu, Y., Chen, L. 2013. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over
$Ni/SiO_2-ZrO_2$ catalysts. Bioresource technology 134: 73-80. https://doi.org/10.1016/j.biortech.2013.02.039 - Zhang, Y., Bi, P., Wang, J., Jiang, P., Wu, X., Xue, H., Liu, J., Zhou, X., Li, Q. 2015. Production of jet and diesel biofuels from renewable lignocellulosic biomass. Applied Energy 150: 128-137. https://doi.org/10.1016/j.apenergy.2015.04.023
- Zhao, C., Lercher, J.A. 2012. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angewandte Chemie 124(24): 6037-6042. https://doi.org/10.1002/ange.201108306
- Zhao, H., Li, D., Bui, P., Oyama, S. 2011. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Applied Catalysis A:General 391(1-2): 305-310. https://doi.org/10.1016/j.apcata.2010.07.039
- Zhu, X., Lobban, L.L., Mallinson, R.G., Resasco, D.E. 2011. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. Journal of Catalysis 281(1): 21-29. https://doi.org/10.1016/j.jcat.2011.03.030