DOI QR코드

DOI QR Code

주사음향현미경을 이용한 코발트기 초내열합금 미세조직에 관한 장시간 열영향에 대한 비파괴평가

Nondestructive Evaluation for Long-term Heat Treatment Effects on Microstructure of Co-base Superalloy by Scanning Acoustic Microscope

  • 이준희 (조선대학교 첨단소재공학과) ;
  • 김정석 (조선대학교 재료공학과)
  • lEE, JoonHee (Dep. of Advanced material and Engineering, Chosun University) ;
  • Kim, ChungSeok (Dep. of Materials Science and Engineering, Chosun University)
  • 투고 : 2019.05.08
  • 심사 : 2019.05.22
  • 발행 : 2019.05.30

초록

The aim of this study investigates the feasibility of scanning acoustic microscope (SAM) with high frequency transducer for material degradation. The test specimen was prepared by artificial heat treatment of Co-base superalloy. The high frequency 200 MHz acoustic lens was used to generate the leaky surface acoustic wave (LSAW) on the test specimens. The matrix precipitates coarsened with thermal aging time, and then grow up to several tens of micrometers. The velocity of LSAW decreased with increasing aging time. Also, it has a good correlation between LSAW and hardness. Consequently, V(z) curve methods of SAM using high frequency transducer is useful tool to evaluate the heat treatment effects on microstructure.

키워드

OCRHB6_2019_v32n3_118_f0001.png 이미지

Fig. 1. Details of acoustic lens and interference of acoustic waves.

OCRHB6_2019_v32n3_118_f0002.png 이미지

Fig. 2. Interference of acoustic waves for multiple echoes V(z) curve.

OCRHB6_2019_v32n3_118_f0003.png 이미지

Fig. 3. Scanning acoustic microscope: (A) schemetic diagram and (b) photo of SAM.

OCRHB6_2019_v32n3_118_f0004.png 이미지

Fig. 4. Measurement configuration for V(z) curved of scanning acoustic microscope.

OCRHB6_2019_v32n3_118_f0005.png 이미지

Fig. 5. SEM images of matrix precipitates of the Cobase superalloy with heat treatment time.

OCRHB6_2019_v32n3_118_f0006.png 이미지

Fig. 6. Variation of Rockwell Hardness with heat treatment time.

OCRHB6_2019_v32n3_118_f0007.png 이미지

Fig. 7. The typical V(z) curves of As-received and 4,000 h heat treatment time.

OCRHB6_2019_v32n3_118_f0008.png 이미지

Fig. 8. Variation of leaky surface acoustic wave velocity with thermal aging time.

OCRHB6_2019_v32n3_118_f0009.png 이미지

Fig. 9. Variation of the elastic modulus with heat treatment time.

Table 1. Chemical composition of the Co-base superalloy

OCRHB6_2019_v32n3_118_t0001.png 이미지

Table 2. Artificial aging heat treatment conditions

OCRHB6_2019_v32n3_118_t0002.png 이미지

참고문헌

  1. D. R. Kwak, S. Yoshida, T. Sasaki, J. A. Todd and I. K. Park : Ultrasonics, 67 (2016) 9. https://doi.org/10.1016/j.ultras.2015.12.006
  2. H. Kanai, N. Chubachi and T. Sannomiya : IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39 (1992) 643. https://doi.org/10.1109/58.156183
  3. A. Habib, A. Shelke, M. Vogel, U. Pietsch, Xin Jiang and T. Kundu : Ultrasonics, 52 (2012) 989. https://doi.org/10.1016/j.ultras.2012.07.011
  4. P. A. Reinholdtsen and B. T. Khuri-Yakub : IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38 (1991) 141. https://doi.org/10.1109/58.68471
  5. M. Duquennoy, M. Ourak, W. J. Xu, B. Nongaillard and M. Ouaftouh : NDT & E International, 28 (1995) 147. https://doi.org/10.1016/0963-8695(95)00006-J
  6. W. H. Jiang, H. R. Guan and Z. Q. Hu : Mat. Sci. Eng., 271 (1999) 101. https://doi.org/10.1016/S0921-5093(99)00183-5