DOI QR코드

DOI QR Code

An Influence of Artificial Intelligence Attributes on the Adoption Level of Artificial Intelligence-Enabled Products

인공지능 기반 제품 수용 정도에 인공지능 속성이 미치는 영향 연구

  • Received : 2019.06.28
  • Accepted : 2019.07.29
  • Published : 2019.08.31

Abstract

Recently, artificial intelligence (AI)-enabled products and services such as smartphones, smart speakers, chatbots are being released due to advances in AI technology. Thus researchers making effort to reveal that consumers' intention to adopt AI-enabled products. Yet, little is known about the intended adoption of AI-enabled products. Because most of studies has been not consideredthe perceived utility value of consumers for each attribute by classified based on the characteristics of AI-enabled products. Therefore, the purpose of this study is to investigate the difference in importance between attributes that affect the intention to adopt of AI-enabled products. For this, first, identified and classified the attributes of AI-enabled products based on IS Success Model of DeLone and McLean. Second, measured the utility value of each attribute on the adoption of AI-enabled products through conjoint analysis. And we employed construal level theory to see whether there are differences in the relative importance of AI-enabled products attributes depending on the temporal distance. Third, we segmented the market based on the utility value of each respondent through cluster analysis and tried to understand the characteristics and needs of consumers in each segment market. We expect to provide theoretical implications for conceptually structured attributes and factors of AI-enabled products and practical implications for how development efforts of AI-enabled products are needed to reach consumers need for each segment.

최근 인공지능(AI) 기술의 신장을 바탕으로 스마트폰, 스마트 스피커, 챗봇 등과 같은 AI 기반 제품(AI-Enabled Products)의 출시가 점차 증가하고 있다. 이에 따라 AI 기반 제품이 지닌 편익을 중심으로 소비자의 수용의도를 밝히고자 하는 많은 연구가 진행되고 있지만, AI 기반 제품이 지닌 특징을 고려하여 속성을 분류하여 각 속성에 대한 소비자의 지각된 효용 가치에 대해서는 연구가 이루어지지 않았다. 따라서 본 연구는 DeLone과 McLean의 IS Success Model을 바탕으로 AI 제품 속성을 AI 속성과 Non-AI 속성으로 구분하고, 컨조인트 분석을 통해 각 속성이 지닌 효용 가치를 기반으로 제품 개발의 방향성을 제안하고자 한다. 또한, AI 제품의 수용 시점에 따른 AI 제품 속성의 상대적 중요도에 차이가 나타나는지 살펴보고자 한다. 더 나아가 컨조인트 분석을 통해 도출된 각 응답자의 효용 가치를 기반으로 군집 분석을 통해 시장을 세분화하고, 각 세분시장을 구성하고 있는 소비자들의 특징과 니즈를 이해하고자 하였다. 본 연구를 통해 AI 기반 제품의 특성과 속성에 대한 개념적으로 구조화된 틀을 제시하는 이론적 시사점과 각 세분시장에 따라 최적화된 AI 제품 개발 방향을 제안한다는 실무적 시사점을 제공할 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 2017년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2017S1A3A2066740).

References

  1. 김찬우, 서창교, "지능형 개인비서(IPA)의 사용의도에 관한 통합모형", Information Systems Review, 제19권, 제4호, 2017, pp. 135-156. https://doi.org/10.14329/isr.2017.19.4.135
  2. Aldholay, A. H., O. Isaac, Z. Abdullah, and T. Ramayah, "The role of transformational leader-ship as a mediating variable in DeLone and McLean information system success model: The context of online learning usage in Yemen", Telematics and Informatics, Vol.35, No.5, 2018, pp. 1421-1437. https://doi.org/10.1016/j.tele.2018.03.012
  3. Aldholay, A. H., O. Isaac, Z. Abdullah, I. Alrajawy, and M. Nusari, "The role of compatibility as a moderating variable in the information system success model: The context of online learning usage", International Journal of Management and Human Science, Vol.2, No.1, 2018, pp. 9-15.
  4. Alexander, D. L., J. G. Lynch Jr, and Q. Wang, "As time goes by: Do cold feet follow warm intentions for really new versus incrementally new products?", Journal of Marketing Research, Vol.45, No.3, 2008, pp. 307-319. https://doi.org/10.1509/jmkr.45.3.307
  5. Andrade, A. D. and B. Doolin, "Information and communication technology and the social inclusion of refugees", MIS Quarterly, Vol.40, No.2, 2016, pp. 405-416. https://doi.org/10.25300/MISQ/2016/40.2.06
  6. Andre, Q., Z. Carmon, K. Wertenbroch, A. Crum, D. Frank, W. Goldstein, J. Huber, L. Van Boven, B. Weber, and H. Yang, "Consumer choice and autonomy in the age of artificial intelligence and big data", Customer Needs and Solutions, Vol.5, No.1-2, 2018, pp. 28-37. https://doi.org/10.1007/s40547-017-0085-8
  7. Atuahene-Gima, K. and H. Li, "Strategic decision comprehensiveness and new product development outcomes in new technology ventures", Academy of Management Journal, Vol.47, No.4, 2004, pp. 583-597. https://doi.org/10.2307/20159603
  8. Bresnahan, T. and P. L. Yin, "Adoption of new information and communications technologies in the workplace today", Innovation Policy and the Economy, Vol.17, No.1, 2017, pp. 95-124. https://doi.org/10.1086/688846
  9. Canhoto, A. I. and S. Arp, "Exploring the factors that support adoption and sustained use of health and fitness wearables", Journal of Marketing Management, Vol.33, No.1-2, 2017,pp. 32-60. https://doi.org/10.1080/0267257X.2016.1234505
  10. Cardello, A. V., H. G. Schutz, and L. L. Lesher, "Consumer perceptions of foods processed by innovative and emerging technologies: A conjoint analytic study", Innovative Food Science & Emerging Technologies, Vol.8, No.1, 2007, pp. 73-83. https://doi.org/10.1016/j.ifset.2006.07.002
  11. Castano, R., M. Sujan, M. Kacker, and H. Sujan, "Managing consumer uncertainty in the adoption of new products: Temporal distance and mental simulation", Journal of Marketing Research, Vol.45, No.3, 2008, pp. 320-336. https://doi.org/10.1509/jmkr.45.3.320
  12. Dahlberg, T., H. Kivijarvi, and T. Saarinen, "Longitudinal study on the expectations of cloud computing benefits and an integrative multilevel model for understanding cloud computing performance", Proceedings of the 50th Hawaii International Conference on System Sciences, 2017, pp. 4251-4260.
  13. Dauda, S. Y. and J. Lee, "Technology adoption: A conjoint analysis of consumers'preference on future online banking services", Information Systems, Vol.53, 2015, pp. 1-15. https://doi.org/10.1016/j.is.2015.04.006
  14. DeLone, W. H. and E. R. McLean, "Information systems success: The quest for the dependent variable", Information Systems Research, Vol.3, No.1, 1992, pp. 60-95. https://doi.org/10.1287/isre.3.1.60
  15. Delone, W. H. and E. R. Mclean, "Measuring e-commerce success: Applying the DeLone & McLean information systems success model", International Journal of Electronic Commerce, Vol.9, No.1, 2004, pp. 31-47. https://doi.org/10.1080/10864415.2004.11044317
  16. Delone, W. H. and E. R. McLean, "The DeLone and McLean model of information systems success: A ten-year update", Journal of Management Information Systems, Vol.19, No.4, 2003, pp. 9-30. https://doi.org/10.1080/07421222.2003.11045748
  17. Dhar, R. and E. Y. Kim, "Seeing the forest or the trees: Implications of construal level theory for consumer choice", Journal of Consumer Psychology, Vol.17, No.2, 2007, pp. 96-100. https://doi.org/10.1016/S1057-7408(07)70014-1
  18. Eggers, F., F. Eggers, and S. Kraus, "Entrepreneurial branding: Measuring consumer preferences through choice-based conjoint analysis", International Entrepreneurship and Management Journal, Vol.12, No.2, 2016, pp. 427-444. https://doi.org/10.1007/s11365-014-0344-1
  19. Gartner, "Hype Cycle for emerging technologies 2018", 2018, Available at https://www.gartner.com/doc/3885468?ref=mrktg-srch.
  20. Gurhan-Canli, Z., "The effect of expected variability of product quality and attribute uniqueness on family brand evaluations", Journal of Consumer Research, Vol.30, No.1, 2003, pp. 105-114. https://doi.org/10.1086/374695
  21. Gursoy, D., O. H. Chi, L. Lu, and R. Nunkoo, "Consumers acceptance of artificially intelligent (AI) device use in service delivery", International Journal of Information Management, Vol.49, 2019, pp. 157-169. https://doi.org/10.1016/j.ijinfomgt.2019.03.008
  22. Hall, W. and J. Pesenti, "Growing the artificial intelligence industry in the UK", Dept. for Digital, Culture, Media & Sport and Dept. for Business, Energy & Industrial Strategy, Part of the Industrial Strategy UK and the Commonwealth, 2017.
  23. Hallam, C. and G. Zanella, "Online self-disclosure: The privacy paradox explained as a temporally discounted balance between concerns and rewards", Computers in Human Behavior, Vol.68, 2017, pp. 217-227. https://doi.org/10.1016/j.chb.2016.11.033
  24. Han, J., S. Kang, and T. S. Moon, "An empirical study on perceived value and continuous intention to use of smart phone, and the moderating effect of personal innovativeness", Asia Pacific Journal of Information Systems, Vol.23, No.4, 2013, pp. 53-84. https://doi.org/10.14329/apjis.2013.23.4.053
  25. Head, M. and N. Ziolkowski, "Understanding student attitudes of mobile phone features: Rethinking adoption through conjoint, cluster and SEM analyses", Computers in Human Behavior, Vol.28, No.6, 2012, pp. 2331-2339. https://doi.org/10.1016/j.chb.2012.07.003
  26. Ho, C. K., W. Ke, and H. Liu, "Choice decision of e-learning system: Implications from construal level theory", Information & Management, Vol.52, No.2, 2015, pp. 160-169. https://doi.org/10.1016/j.im.2014.07.003
  27. Hong, J. C., P. H. Lin, and P. C. Hsieh, "The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch", Computers in Human Behavior, Vol.67, 2017, pp. 264-272. https://doi.org/10.1016/j.chb.2016.11.001
  28. Hsu, C. L. and J. C. C. Lin, "What drives purchase intention for paid mobile apps? An expectation confirmation model with perceived value", Electronic Commerce Research and Applications, Vol.14, No.1,2015, pp. 46-57. https://doi.org/10.1016/j.elerap.2014.11.003
  29. Hsu, M. H., C. M. Chang, K. K. Chu, and Y. J. Lee, "Determinants of repurchase intention in online group-buying: The perspectives of DeLone & McLean IS success model and trust", Computers in Human Behavior, Vol.36, 2014, pp. 234-245. https://doi.org/10.1016/j.chb.2014.03.065
  30. Jaworski, B. J. and A. K. Kohli, "Market orientation: Antecedents and consequences", Journal of Marketing, Vol.57, No.3, 1993, pp. 53-70. https://doi.org/10.1177/002224299305700304
  31. Kankanhalli, A., H. Ye, and H. H. Teo, "Comparing potential and actual innovators: An empirical study of mobile data services innovation", MIS Quarterly, Vol.39, No.3, 2015, pp. 667-682. https://doi.org/10.25300/MISQ/2015/39.3.07
  32. Kinsella, B., "U.S. Smart Speaker Users Rise to 57 Million", 2018, Available at https://voicebot.ai/2018/10/30/u-s-smart-speaker-users-rise-to-57-million/.
  33. Kohler, C. F., E. Breugelmans, and B. G. Dellaert, "Consumer acceptance of recommendations by interactive decision aids: The joint role of temporal distance and concrete versus abstract communications", Journal of Management Information Systems, Vol.27, No.4, 2011, pp. 231-260. https://doi.org/10.2753/MIS0742-1222270408
  34. Ledgerwood, A., C. J. Wakslak, and M. A. Wang, "Differential information use for near and distant decisions", Journal of Experimental Social Psychology, Vol.46, No.4, 2010, pp. 638-642. https://doi.org/10.1016/j.jesp.2010.03.001
  35. Lee, Y., F. N. Ho, and M. C. Wu, "How do form and functional newness affect adoption preference? The moderating role of consumer need for uniqueness", Journal of Consumer Marketing, Vol.35, No.1, 2018, pp. 79-90. https://doi.org/10.1108/JCM-10-2015-1578
  36. Li, S., H. Records, and R. Behling, "A comparison of Information Technology mediated customer services between the US and China", Issues in Information Systems, Vol.19, No.1, 2018, pp.1-10.
  37. Li, Y., N. Zhang, and M. Siponen, "Keeping secure to the end: A long-term perspective to understand employees' consequence-delayed information security violation", Behaviour & Information Technology, Vol.38, No.5, 2019, pp. 435-453. https://doi.org/10.1080/0144929X.2018.1539519
  38. Luo, X., M. Warkentin, and H. Li, "Understanding technology adoption trade-offs: A conjoint analysis approach", Journal of Computer Information Systems, Vol.53, No.3, 2013, pp. 65-74. https://doi.org/10.1080/08874417.2013.11645633
  39. Luo, Y. and J. Bu, "How valuable is information and communication technology? A study of emerging economy enterprises", Journal of World Business, Vol.51, No.2, 2016, pp. 200-211. https://doi.org/10.1016/j.jwb.2015.06.001
  40. Moore, M. H., Creating public value: Strategic management in government, Harvard University Press, 1995.
  41. Nielsen, "Millennials and generation Z lead the future of media", 2016, Available at https://www.nielsen.com/nz/en/insights/news/2016/millennials-and-generation-z-lead-the-future-of-media.html.
  42. Pannu, A., "Artificial intelligence and its application in different areas", Artificial Intelligence, Vol.4, No.10, 2015, pp. 79-84.
  43. Petter, S. and E. R. McLean, "A meta-analytic assessment of the DeLone and McLean IS success model: An examination of IS success at the individual level", Information & Management, Vol.46, No.3, 2009, pp. 159-166. https://doi.org/10.1016/j.im.2008.12.006
  44. Ram, S., "A model of innovation resistance", Advances in Consumer Research, Vol.14, 1987, pp. 208-212.
  45. Rogers, E. M., Diffusion of Innovations (4th ed.), The Free Press, New York, 1995.
  46. Rouibah, K., P. B. Lowry, and L. Almutairi, "Dimensions of business-to-consumer (B2C) systems success in Kuwait: Testing a modified DeLone and McLean IS success model in an e-commerce context", Journal of Global Information Management, Vol.23, No.3, 2015, pp. 41-71. https://doi.org/10.4018/JGIM.2015070103
  47. Russell, S. J. and P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, 2016.
  48. Shen, C. C. and J. S. Chiou, "The impact of perceived ease of use on internet service adoption: The moderating effects of temporal distance and perceived risk", Computers in Human Behavior, Vol.26, No.1, 2010, pp. 42-50. https://doi.org/10.1016/j.chb.2009.07.003
  49. Shih, C. F. and A. Venkatesh, "Beyond adoption: Development and application of a use-diffusion model", Journal of Marketing, Vol.68, No.1, 2004, pp. 59-72. https://doi.org/10.1509/jmkg.68.1.59.24029
  50. Steenkamp, J. B. E. and K. Gielens, "Consumer and market drivers of the trial probability of new consumer packaged goods", Journal of Consumer Research, Vol.30, No.3, 2003, pp. 368-384. https://doi.org/10.1086/378615
  51. Tam, C. and T. Oliveira, "Understanding mobile banking individual performance: The DeLone & McLean model and the moderating effects of individual culture", Internet Research, Vol.27, No.3, 2017, pp. 538-562. https://doi.org/10.1108/IntR-05-2016-0117
  52. Tam, L., M. Glassman, and M. Vandenwauver, "The psychology of password management: A tradeoff between security and convenience", Behaviour & Information Technology, Vol.29, No.3, 2010, pp. 233-244. https://doi.org/10.1080/01449290903121386
  53. Thompson, D. V., R. W. Hamilton, and R. T. Rust, "Feature fatigue: When product capabilities become too much of a good thing", Journal of Marketing Research, Vol.42, No.4, 2005, pp. 431-442. https://doi.org/10.1509/jmkr.2005.42.4.431
  54. Trope, Y. and N. Liberman, "Construal-level theory of psychological distance", Psychological Review, Vol.117, No.2, 2010,pp. 440-463. https://doi.org/10.1037/a0018963
  55. Trope, Y. and N. Liberman, "Temporal construal", Psychological Review, Vol.110, No.3, 2003, pp. 403-421. https://doi.org/10.1037/0033-295X.110.3.403
  56. Trope, Y., N. Liberman, and C. Wakslak, "Construal levels and psychological distance: Effects on representation, prediction, evaluation, and behavior", Journal of Consumer Psychology, Vol.17, No.2, 2007, pp. 83-95. https://doi.org/10.1016/S1057-7408(07)70013-X
  57. Wang, W. T., Y. S. Wang, and E. R. Liu, "The stickiness intention of group-buying websites: The integration of the commitment-trust theory and e-commerce success model", Information & Management, Vol.53, No.5, 2016, pp. 625-642. https://doi.org/10.1016/j.im.2016.01.006
  58. Wigfield, A. and J. S. Eccles, "Expectancy-value theory of achievement motivation", Contemporary Educational Psychology, Vol.25, No.1, 2000, pp. 68-81. https://doi.org/10.1006/ceps.1999.1015
  59. Yang, H., J. Yu, H. Zo, and M. Choi, "User acceptance of wearable devices: An extended perspective of perceived value", Telematics and Informatics, Vol.33, No.2, 2016, pp. 256-269. https://doi.org/10.1016/j.tele.2015.08.007
  60. Zhang, B. T., "Humans and machines in the evolution of AI in Korea", AI Magazine, Vol.37, No.2, 2016, pp. 108-112. https://doi.org/10.1609/aimag.v37i2.2656