Fig. 1. DeepWalk Overview
Fig. 2. Fake news detection procedures that combine text and network embedding methods
Table 1. Statistics for fake news detection data set
Table 2. Fake news detection experiment results using text analysis and graph embedding
Table 3. Fake News Detection Analysis Results Combining Text Analysis and Graph Embedding
References
- H. Allcott & M. Gentzkow. (2017). "Social media and fake news in the 2016 election". Journal of Economic Perspectives, 31(2), 211-236. DOI: 10.1257/jep.31.2.211
- N. J. Conroy, V. L. Rubin & Y. Chen. (2015). "Automatic deception detection: methods for finding fake news". Proceedings of the Association for Information Science and Technology, 52(1), 1-11.
- E. Mustafaraj & P. T. Metaxas. (2017). "The fake news spreading plague: Was it preventable?". Proceedings of the 2017 ACM on Web Science Conference, 235-239.
- M. Potthast, J. Kiesel, K. Reinartz, J. Bevendorff & B. Stein. (2018). "A stylometric inquiry into hyperpartisan and fake news". Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL'18), 231-240
- J. Tang, Y. Chang, & H. Liu. (2014). "Mining social media with social theories: A survey". ACM SIGKDD Explorations Newsletter. 15(2), 20-29. https://doi.org/10.1145/2641190.2641195
- V. L. Rubin, Y. Chen & N. J. Conroy. (2015). "Deception detection for news: Three types of fakes". Proceedings of the Association for Information Science and Technology, 52(1), 1-11. https://doi.org/10.1002/pra2.2015.145052010082
- B. D. Horne & S. Adali. (2017). "This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news". Proceedings of AAAI, 1-9.
- H. Ahmed, I. Traore & S. Saad. (2017). "Detection of online fake news using n-gram analysis and machine learning techniques". International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments, 127-138.
- Z. Jia, L. Zhao & N. Zhou.. (2017). "The research on fraud group mining which based on social network analysis". IEEE International Conference on Computer and Communications Analysis, 2387-2391.
- Z. Jin, J. Cao, Y. Zhang & J. Luo. (2016). "News Verification by Exploiting Conflicting Social Viewpoints in Microblogs". Proceedings of AAAI, 2972-2978.
- E. Tacchini, G. Ballarin, M. L. Della Vedova, S. Moret, & L. de Alfaro. (2017). "Some like it hoax: Automated fake news detection in social networks," CEUR Workshop Proceedings (1960), 1-12.
- N. Ruchansky, S. Seo & Y. Liu. "CSI: A hybrid deep model for fake news detection". Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM '17), 797-806.
- S. Kwon, M. Cha, K. Jung, W. Chen & Y. Wang. (2013). "Prominent features of rumor propagation in online social media". IEEE 13th International Conference on Data Mining, 1103-1108.
- T. Mikolov, K. Chen, G. Corrado & J. Dean. (2013). "Efficient Estimation of Word Representations in Vector Space". Proceedings of Workshop at ICLR, 1-12.
- B. Perozzi, R. Al-Rfou & S. Skiena. (2014). "DeepWalk: Online learning of social representations". Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '14), 701-710.
- A. Grover & J. Leskovec. (2016). "Node2Vec: Scalable feature learning for networks". Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16), 855-864.
- K. Shu, S. Wang & H. Liu. (2019). "Exploiting tri-relationship for fake news detection". Proceedings of 12th ACM International Conference on Web Search and Data Mining (WSDM 2019), arXiv:1712.07709.