Fig. 1. Dataset structure
Fig. 2. Sample Images of Real Dataset
Fig. 3. System architecture
Fig. 4. Standard Median Filter
Fig. 5. Structure of light illumination normalization
Fig. 6. A Denoising Autoencoder
Fig. 7. Testing loss comparison of DAE, DAECNN and MF+DAECNN methods
Fig. 8. Sample of Noisy and Denoised images fordifferent denoising methods.
Table 1. MSE comparison results of different denoising methods with the original image on Eq. 2.
Table 2. PSNR comparison results of different denoising methods with the original image on Eq. 3.
Table 3. SSIM comparison results of different denoising methods with the original image on Eq. 4.
References
- M. Mirmehdi, P. Clark & J. Lam. (2001). Extracting low resolution text with an active camera for OCR, Proc. of the 9th Spanish symposium on pattern recognition and image processing, 43-48. DOI: 10.1109/TSMCB.2005.857353
- S. Suman. (2014). Image Denoising using New Adaptive Based Median Filter, Signal and Image Processing: An International Journal, 5(4). DOI: 10.5121/sipij.2014.5401
- Wang G, Wang Y & Li H, et al. (2014). Morphological background detection and illumination normalization of text image with poor lighting, PLoS One, 9(11) :e110991. DOI:10.1371/journal.pone.0110991
- Y. Luo, Y. P. Guan & C. Q. Zhang. (2013). A robust illumination normalization method based on mean estimation for face recognition, ISRN Machine Vision, 1-10. Article ID 516052. DOI: 10.1155/2013/516052
- K. G. Lore, A. Akintayo & S. Sarkar (2017). LLNet: A deep autoencoder approach to natural low-light image enhancement, Pattern Recognition, 61, 650-662. DOI: 10.1016/j.patcog.2016.06.008.
- P. Vincent, et al., (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Proc. of the 27th Int. Conf. on Machine Learning. 3371-3408, ACM. DOI: 10.1.1.297.3484
- K. H. Cho. (2013). Boltzmann machines and denoising autoencoders for image denoising. arXiv:1301.3468. DOI: arXiv:1301.3468v6.
- T. Remez, et al. (2017). Deep convolutional denoising of low-light images, arXiv:1701.01687. DOI: arXiv:1701.01687v1
- L. Gondara. (2016). Medical Image Denoising Using Convolutional Denoising Autoencoders. IEEE 16th Int. Conf. on Data Mining Workshops, pp. 241-246, Barcelona. DOI: 10.1109/ICDMW.2016.0041
- X. Glorot & Y. Bengio. (2010). Understanding the difficulty of training deep feedforward neural networks, Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics, 9, 249-256. DOI:10.1.1.207.2059
- W. Chen, J. E. Meng & W. Shiqian (2006). Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain, IEEE Transactions on Systems, Man, and Cybernetics, 36(2), 458-466. DOI: 10.1109/TSMCB.2005.857353
- A. Tsatsral, J. Bilguun & H. R. Keun, (2018). Unsupervised Novelty Detection Using Deep Autoencoders with Density Based Clustering, Appl. Sci., 8(9), 1468. DOI: 10.3390/app8091468
- D. P. Kingm & J. Ba. (2014). Adam: A method for stochastic optimization, Proc. of the 3rd Int. Conf. for Learning Representations, pp. 7-9, San Diego, CA, USA. DOI:arXiv:1412.6980v9
- M. Abadi, et al., (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems, arXiv:1603.04467. DOI: arXiv:1603.04467v2
- Q. Shan, et al., (2010). Using optical defocus to denoise. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 561-568, San Francisco, CA. DOI: 10.1109/CVPR.2010.5540164