Acknowledgement
Supported by : National Natural Science Foundation of P. R. China
References
- Berry, E.E., Hemmings, R.T. and Cornelius, B.J. (1990), "Mechanisms of hydration reactions in high volume fly ash pastes and mortars", Cement Concrete Compos., 12(4), 253-261 https://doi.org/10.1016/0958-9465(90)90004-H
- Brown, P.W. (2002), "Thaumasite formation and other forms of sulfate attack", Cement Concrete Compos., 24(3-4), 301-303. https://doi.org/10.1016/S0958-9465(01)00081-6
- Bui, P.T., Ogawa, Y., Nakarai, K. and Kawai, K. (2016), "Effect of internal alkali activation on pozzolanic reaction of low-calcium fly ash cement paste", Mater. Struct., 49, 3039-3053. https://doi.org/10.1617/s11527-015-0703-6
- Cabrera, J.G. and Plowman, C. (1988), "The mechanism and rate of attack of sodium sulphate solution on cement and cemenvpfa pastes", Adv. Concrete Res., 1(3), 171-179.
- Chindaprasirt, P., Homwuttiwong, S. and Sirivivatnanon, V. (2004), "Effectiveness of fly ash on the restrained shrinkage cracking resistance of self-compacting concrete", Cement Concrete Res., 34(17), 1087-1092. https://doi.org/10.1016/j.cemconres.2003.11.021
- Chindaprasirt, P., Jaturapitakkul, C. and Sinsiri, T. (2005), "Effect of fly ash fineness on compressive strength and pore size of blended cement paste", Cement Concrete Compos., 27(4), 425-428. https://doi.org/10.1016/j.cemconcomp.2004.07.003
- Djuric, M., Ranogajec, J., Omorjan, R. and Miletic, S. (1996), "Sulfate corrosion of portland cement-pure and blended with 30% of fly ash", Cement Concrete Res., 26(9), 1295-1300. https://doi.org/10.1016/0008-8846(96)00127-5
- Ghafoori, N., Najimi, M., Diawara, H. and Islam, M.S. (2015), "Effects of class F fly ash on sulfate resistance of Type V Portland cement concretes under continuous and interrupted sulfate exposures", Constr. Build. Mater., 78, 85-91. https://doi.org/10.1016/j.conbuildmat.2015.01.004
- Guerrero, A., Goni, S. and Allegro, V.R. (2009), "Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack", J. Hazard. Mater., 161(2-3), 1250-1254. https://doi.org/10.1016/j.jhazmat.2008.04.086
- Hanehara, S., Tomosawa, F., Kobayakawa, M. and Hwang, K. (2001), "Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste", Cement Concrete Res., 31(1), 31-39. https://doi.org/10.1016/S0008-8846(00)00441-5
- Irassar, F. and Batic, O. (1989), "Effects of low calcium fly ash on sulfate resistance of OPC cement", Cement Concrete Res., 19(2), 194-202. https://doi.org/10.1016/0008-8846(89)90084-7
- Jena, T. and Panda, K.C. (2018), "Mechanical and durability properties of marine concrete using fly ash and silpozz", Adv. Concrete Constr., 6(1), 47-68. https://doi.org/10.12989/ACC.2018.6.1.047
- Jindal, B.B., Singhal, D., Sharma, S.K., Ashish, D.K. and Parveen. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., 5(1), 17-29. https://doi.org/10.12989/acc.2017.5.1.17
- Lam, L., Wong, Y.L. and Poon, C.S. (2000), "Degree of hydration and gel/space ratio of high-volume fly ash/cement systems", Cement Concrete Res., 30, 747-756. https://doi.org/10.1016/S0008-8846(00)00213-1
- Lee, C.Y., Lee, H.K. and Lee, K.M. (2003), "Strength and microstructural characteristics of chemically activated fly ashcement systems", Cement Concrete Res., 33, 425-431. https://doi.org/10.1016/S0008-8846(02)00973-0
- Malhotra, V.M. (1990), "Durability of concrete incorporating highvolume of low-calcium (ASTM Class F) fly ash", Cement Concrete Compos., 12(4), 271-277. https://doi.org/10.1016/0958-9465(90)90006-J
- Paliwal, G. and Maru, S. (2017), "Effect of fly ash and plastic waste on mechanical and durability properties of concrete", Adv. Concrete Constr., 5(6), 313-330.
- Papadakis, V.G. (1999), "Effect of fly ash on Portland cement systems: Part I. Low-calcium fly ash", Cement Concrete Res., 29(11), 1727-1736. https://doi.org/10.1016/S0008-8846(99)00153-2
- Poon, C.S., Lam, L. and Wong, Y.L. (2000), "A study on high strength concrete prepared with large volumes of low calcium fly ash", Cement Concrete Res., 30(3), 447-455. https://doi.org/10.1016/S0008-8846(99)00271-9
- Roy, D.M., Arjunan, P. and Silsbee, M.R. (2001), "Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concrete", Cement Concrete Res., 31(12), 1809-1813. https://doi.org/10.1016/S0008-8846(01)00548-8
-
Shane, D., Ana, F.J. and Palomo, A.A. (2013), "Very high volume fly ash cements early age hydration study using
$Na_{2}SO_{4}$ as an activator", J. Am. Ceramic Soc., 96(3), 900-906. https://doi.org/10.1111/jace.12178 - Shi, M.X., Wang, Q. and Zhou, Z. (2015), "Comparison of the properties between high-volume fly ash concrete and highvolume steel slag concrete under temperature matching curing condition", Constr. Build. Mater., 98, 649-655. https://doi.org/10.1016/j.conbuildmat.2015.08.134
- Stark, D. (2002), "Performance of concrete in sulfate environments", PCA Research & Development Bulletin RD129, Portland Cement Association, Skokie, IL, 1-23.
- Supit, S.W.M., Shaikh, F.U.A. and Sarker, P.K. (2014), "Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar", Constr. Build. Mater., 51(31), 278-286 https://doi.org/10.1016/j.conbuildmat.2013.11.002
- Tertnkhajornkit, P.N., Nawa, T. and Nakai, M. (2005), "Effect of fly ash on autogenous shrinkage", Cement Concrete Res., 35(3), 473-482. https://doi.org/10.1016/j.cemconres.2004.07.010
- Tikalsky, P.J. and Carrasquillo, R.L. (1992), "Influence of fly ash on the sulfate resistance of concrete", ACI Mater. J., 89(1), 69-75.
- Torii, K., Taniguchi, K. and Kawamura, M. (1995), "Sulfate resistance of high fly ash content concrete", Cement Concrete Res., 25(4), 759-768. https://doi.org/10.1016/0008-8846(95)00066-L
- Wang, D.Z., Zhou, X.M., Meng, Y.F. and Chen, Z. (2017), "Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack", Constr. Build. Mater., 147, 398-406. https://doi.org/10.1016/j.conbuildmat.2017.04.172
- Wang, X.Y. and Lee, H.S. (2013), "Modeling of chloride diffusion in concrete containing low-calcium fly ash", Mater. Chem. Phys., 138(2-3), 917-928. https://doi.org/10.1016/j.matchemphys.2012.12.085
- Xiong, C.S., Jiang, L.H., Xu, Y., Song, Z.J., Chu, H.Q. and Guo, Q.X. (2016), "Influences of exposure condition and sulfate salt type on deterioration of paste with and without fly ash", Constr. Build. Mater., 113, 951-963. https://doi.org/10.1016/j.conbuildmat.2016.03.154
- Zhang, W.M., Ba, H.J. and Chen, S.J. (2011), "Effect of fly ash and repeated loading on diffusion coefficient in chloride migration test", Constr. Build. Mater., 25(5), 2269-2274. https://doi.org/10.1016/j.conbuildmat.2010.11.016
- Zhang, Y.M., Sun, W. and Shang, L.F. (1997), "Mechanical properties of high performance concrete made with high calcium high sulfate fly ash", Cement Concrete Res., 27(7), 1093-1098. https://doi.org/10.1016/S0008-8846(97)00087-2
Cited by
- Effect of sulfate activators on mechanical property of high replacement low-calcium ultrafine fly ash blended cement paste vol.11, pp.3, 2019, https://doi.org/10.12989/acc.2021.11.3.183