DOI QR코드

DOI QR Code

The effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened(ODS) steel

  • Jang, Ki-Nam (Dongguk University, College of Energy & Environment) ;
  • Kim, Tae-Kyu (Korea Atomic Energy Research Institute) ;
  • Kim, Kyu-Tae (Dongguk University, College of Energy & Environment)
  • Received : 2018.06.04
  • Accepted : 2018.09.28
  • Published : 2019.02.25

Abstract

The 9Cr-1Mo ferritic-martensitic ODS steel is a promising structural material for the next generation nuclear power plants including fast reactors for application in reactor vessels and nuclear fuel. The ODS steel was cooled down by furnace cooling, air cooling, oil quenching and water quenching, respectively, after normalizing it at $1150^{\circ}C$ for 1 h and then tempering at $780^{\circ}C$ for 1 h. It is found that grain size, a relative portion of ferrite and martensite, martensitic lath configuration, behaviors of carbide precipitates, and hardness of the ODS steel are strongly dependent on a cooling rate. The grain size and martensitic lath width become smaller with the increase in a cooling rate. The carbides were precipitated at the grain boundaries formed between the ferrite and martensite phases and at the martensitic lath interfaces. In addition, the carbide precipitates become smaller and more widely dispersed with the increase in a cooling rate, resulting in that the faster cooling rate generated the higher hardness of the ODS steel.

Keywords

References

  1. S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, H. Nakashima, Characterization of high temperature creep properties in recrystallized 12Cr-ODS ferritic steel claddings, J. Nucl. Sci. Technol. 39 (2002) 872.
  2. H.S. Cho, H. Ohkubo, N. Iwata, A. Kimura, S. Ukai, M. Fujiwara, Improvement of compatibility of advanced ferritic steels with super critical pressurized water toward a higher thermally efficient water-cooled blanket system, Fusion Eng. Des. 81 (2006) 1071. https://doi.org/10.1016/j.fusengdes.2005.09.056
  3. Y. Yamashita, N. Akasaka, S. Ukai, S. Ohnuki, Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature, J. Nucl. Mater. 367-370 (2007) 202. https://doi.org/10.1016/j.jnucmat.2007.03.145
  4. J.J. Huet, L. Coheur, A. De Bremaecker, L. De Wilde, J. Gedopt, W. Hendrix, W. Vandermeulen, F, Print Permalink Translate abrication and mechanical properties of oxide dispersion strengthening ferritic alloy (canning tubes) for fast reactor fuel pins, Nucl. Technol. 70 (1985) 215. https://doi.org/10.13182/NT85-A33645
  5. Y. Choi, D. Kim, S. Kim, S. Kang, J. Jang, H. Han, K. Oh, In-situ microstructure evolution of oxide dispersion strengthened ferritic steel under uniaxial deformation, J. Nucl. Mater. 428 (2012) 98. https://doi.org/10.1016/j.jnucmat.2011.10.045
  6. S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, J. Nucl. Mater. 204 (1993) 65. https://doi.org/10.1016/0022-3115(93)90200-I
  7. S. Ukai, T. Nishida, H. Okada, Development of oxide dispersion strengthened ferritic steels for FBR Core application(I), J. Nucl. Sci. Technol. 34 (1997) 256. https://doi.org/10.1080/18811248.1997.9733658
  8. R.L. Klueh, D.R. Harries, High Chromium Ferritic and Martensitic Steels for Nuclear Applications, 2001. ASTM Stock Number: MONO 3.
  9. S. Ohtsuka, S. Ukai, H. Sakasegawa, M. Fujiwara, T. Kaito, T. Narita, Nanomesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength, J. Nucl. Mater. 367-370 (2007) 160. https://doi.org/10.1016/j.jnucmat.2007.03.004
  10. L. Toualbi, C. Cayron, P. Olier, R. Loge, Y. de Carlan, Relationships between mechanical behavior and microstructural evolutions in Fe 9Cr-ODS during the fabrication route of SFR cladding tubes, J. Nucl. Mater. 42 (2013) 410.
  11. L. Toualbi, C. Cayron, P. Olier, et al., Assessment of a new fabrication route for Fe-9Cr-1W ODS cladding tubes, J. Nucl. Mater. 428 (2012) 47. https://doi.org/10.1016/j.jnucmat.2011.12.013
  12. H.R.Z. Sandim, R.A. Renzetti, A.F. Padilha, D. Raabe, M. Klimenkov, R. Lindau, A. Moslang, Annealing behavior of ferritic-martensitic 9%Cr-ODS-Eurofer steel, Mater. Sci. Eng., A 527 (2010) 3602. https://doi.org/10.1016/j.msea.2010.02.051
  13. S. Noh, B. Choi, C. Han, S. Kang J. Jang, Y. Jeong, T. Kim, Effects of heat treatments on microstructures and mechanical properties on dual phase steels for high temperature strength, Nucl. Eng. Technol. 45 (2013) 821. https://doi.org/10.5516/NET.02.2013.529
  14. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Improvement of creep strength of 9Cr ODS martensitic steel by controlling excess oxygen and titanium concentration, Mater. Trans. 46 (3) (2005) 487. https://doi.org/10.2320/matertrans.46.487
  15. S. Kim, S. Ohtsuka, T. Kaito, S. Yamashita, M. Inoue, T. Asayama, T. Shobu, Formation of nano-oxide particles and ${\delta}$-ferrite at elevated temperature in 9Cr-ODS steel, J. Nucl. Mater. 417 (2011) 209. https://doi.org/10.1016/j.jnucmat.2011.01.063
  16. M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, S. Ohtsuka, Formation of residual ferrite in 9Cr-ODS ferritic steels, Mater. Sci. Eng., A 527 (2010) 4418. https://doi.org/10.1016/j.msea.2010.03.079
  17. S. Ukai, S. Mizuta, M. Fujiwara, T. Okuda, T. Kobayashi, Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation, J. Nucl. Sci. Technol. 39 (2002) 778.
  18. W.F. Smith, Structure and Properties of Engineering Alloys, second ed., McGraw-Hill, New York, 1993.

Cited by

  1. Effect of Quenching Conditions on the Microstructure and Mechanical Properties of 51CrV4 Spring Steel vol.8, pp.12, 2019, https://doi.org/10.3390/met8121056
  2. Effect of welding current on microstructure and properties of 2 GPa press-hardened steel joints by RSW vol.6, pp.11, 2019, https://doi.org/10.1088/2053-1591/ab506e
  3. Fundamental Study on Segregation Behavior in U-Zr-Fe-O System during Solidification Process vol.18, pp.3, 2019, https://doi.org/10.3327/taesj.j18.029
  4. 페라이트/마르텐사이트계 산화물분산강화강의 미세조직 및 샤르피 충격특성에 미치는 코발트 함량의 영향 vol.27, pp.4, 2019, https://doi.org/10.4150/kpmi.2020.27.4.311
  5. The Effect of Airflow Speed as Cooling Media in the Hardening Process to the Hardness, Corrosion Rate and Fatigue Life of Medium Carbon Steel vol.1045, 2019, https://doi.org/10.4028/www.scientific.net/msf.1045.40