DOI QR코드

DOI QR Code

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Wang, Bingzhong (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Zhang, Jingyu (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Ding, Shurong (Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University) ;
  • Chen, Liang (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institution of China) ;
  • Pang, Hua (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institution of China) ;
  • Song, Xiaoming (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institution of China)
  • Received : 2018.07.15
  • Accepted : 2018.09.25
  • Published : 2019.02.25

Abstract

In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.

Keywords

References

  1. L.J. Siefken, E.W. Coryell, E.A. Harvego, et al., MATPRO-A Library of Materials Properties for Light-water-reactor Accident Analysis. Idaho Falls, Idaho National Engineering and Environmental Laboratory, 2001.
  2. P. Shewmon, Diffusion in Solids. The Minerals, Metals & Materials Society, Diffusion in Solids, second ed., Retroactive Coverage, United States), 1989, p. 246, 1989.
  3. C.E. Coleman, D. Hardie, The hydrogen embrittlement of ${\alpha}$-zirconium-a review, J. Less Common Met. 11 (3) (1966) 168-185. https://doi.org/10.1016/0022-5088(66)90003-8
  4. L.O. Jernkvist, A.R. Massih, Multi-field modelling of hydride forming metals. Part I: model formulation and validation, Comput. Mater. Sci. 85 (2014) 363-382. https://doi.org/10.1016/j.commatsci.2013.11.034
  5. C.E. Coleman, Cracking of hydride-forming metals and alloys, in: Comprehensive Structural Integrity, 6, 2003, pp. 103-161.
  6. M.P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking, Springer Science & Business Media, 2012.
  7. C.K. Chao, K.C. Yang, C.C. Tseng, Rupture of spent fuel Zircaloy cladding in dry storage due to delayed hydride cracking, Nucl. Eng. Des. 238 (1) (2008) 124-129. https://doi.org/10.1016/j.nucengdes.2007.06.005
  8. C.L. Briant, Z.F. Wang, N. Chollocoop, Hydrogen embrittlement of commercial purity titanium, Corrosion Sci. 44 (8) (2002) 1875-1888. https://doi.org/10.1016/S0010-938X(01)00159-7
  9. A.G. Varias, J.L. Feng, Simulation of hydride-induced steady-state crack growth in metalsePart I: growth near hydrogen chemical equilibrium, Comput. Mech. 34 (5) (2004) 339-356. https://doi.org/10.1007/s00466-004-0578-9
  10. S.Q. Shi, M.P. Puls, Dependence of the threshold stress intensity factor on hydrogen concentration during delayed hydride cracking in zirconium alloys, J. Nucl. Mater. 218 (1) (1995) 30-36. https://doi.org/10.1016/0022-3115(94)00368-8
  11. E. Smith, Threshold stress criterion for delayed hydride crack initiation at a blunt notch in zirconium alloys, Int. J. Pres. Ves. Pip. 68 (1) (1996) 53-61. https://doi.org/10.1016/0308-0161(95)00039-9
  12. K.S. Chan, A micromechanical model for predicting hydride embrittlement in nuclear fuel cladding material, J. Nucl. Mater. 227 (3) (1996) 220-236. https://doi.org/10.1016/0022-3115(95)00160-3
  13. K. Une, S. Ishimoto, Y. Etoh, et al., The terminal solid solubility of hydrogen in irradiated Zircaloy-2 and microscopic modeling of hydride behavior, J. Nucl. Mater. 389 (1) (2009) 127-136. https://doi.org/10.1016/j.jnucmat.2009.01.017
  14. A.T. Motta, L.Q. Chen, Hydride formation in zirconium alloys, JOM (J. Occup. Med.) 64 (12) (2012) 1403-1408.
  15. J.A. Szpunar, W. Qin, H. Li, et al., Roles of texture in controlling oxidation, hydrogen ingress and hydride formation in Zr alloys, J. Nucl. Mater. 427 (1) (2012) 343-349. https://doi.org/10.1016/j.jnucmat.2012.05.005
  16. C. Sun, J. Tan, et al., Critical temperature of delayed hydride cracking in N-18 Zircaloy, Acta Metall. Sin. 45 (5) (2009) 541-546. https://doi.org/10.3321/j.issn:0412-1961.2009.05.005
  17. W.J. Zhao, Development of new nuclear cladding in French PWR, Nucl. Power Eng. 21 (3) (2000) 278-284. https://doi.org/10.3969/j.issn.0258-0926.2000.03.019
  18. Y. Gou, Y. Li, Y. Liu, et al., Evaluation of a delayed hydride cracking in Zr-2.5 Nb CANDU and RBMK pressure tubes, Mater. Des. 30 (4) (2009) 1231-1235. https://doi.org/10.1016/j.matdes.2008.06.011
  19. M.D. Pandey, M. Wang, G.A. Bickel, A probabilistic approach to update lower bound threshold stress intensity factor (K IH) for delayed hydride cracking, Nucl. Eng. Des. 240 (10) (2010) 2682-2690. https://doi.org/10.1016/j.nucengdes.2010.05.037
  20. A. Zielinski, S. Sobieszczyk, Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications, Int. J. Hydrogen Energy 36 (14) (2011) 8619-8629. https://doi.org/10.1016/j.ijhydene.2011.04.002
  21. M.D. Pandey, D.D. Radford, A statistical approach to the prediction of pressure tube fracture toughness, Nucl. Eng. Des. 238 (12) (2008) 3218-3226. https://doi.org/10.1016/j.nucengdes.2008.07.016
  22. J.I. Mieza, G.L. Vigna, G. Domizzi, Evaluation of variables affecting crack propagation by Delayed Hydride Cracking in Zr-2.5 Nb with different heat treatments, J. Nucl. Mater. 411 (1) (2011) 150-159. https://doi.org/10.1016/j.jnucmat.2011.01.101
  23. L.O. Jernkvist, Multi-field modelling of hydride forming metals Part I: model formation and validation, Comput. Mater. Sci. 85 (2014) 383-401. https://doi.org/10.1016/j.commatsci.2013.11.035
  24. N. Hashimoto, T.S. Byun, K. Farrell, et al., Deformation microstructure of neutron-irradiated pure polycrystalline metals, J. Nucl. Mater. 329 (2004) 947-952. https://doi.org/10.1016/j.jnucmat.2004.04.063
  25. E.R. Bradley, G.P. Sabol, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM, 1996.
  26. A.M. Garde, G.P. Smith, R.C. Pirek, Effects of Hydride Precipitate Localization and Neutron Fluence on the Ductility of Irradiated Zircaloy-4//Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM International, 1996.
  27. F. Yunchang, D.A. Koss, The influence of multiaxial states of stress on the hydrogen embrittlement of zirconium alloy sheet, Metall. Trans. A 16 (4) (1985) 675-681. https://doi.org/10.1007/BF02814242
  28. J.H. Huang, S.P. Huang, Effect of hydrogen contents on the mechanical properties of Zircaloy-4, J. Nucl. Mater. 208 (1) (1994) 166-179. https://doi.org/10.1016/0022-3115(94)90208-9
  29. G.P. Marino, HYDIZ, A 2-dimensonal computer program for migration of interstitial solutes of finite solubility in a thermal gradient (LWBR Development Program), Bettis Atomic Power Lab., Pittsburgh, PA (USA), 1974.
  30. J. Freund, A Model for Thermal Diffusion of Hydrogen in Zirconium Alloys, Helsinki University of Technology, 1992.
  31. P. Sofronis, R.M. McMeeking, Numerical analysis of hydrogen transport near a blunting crack tip, J. Mech. Phys. Solid. 37 (3) (1989) 317-350. https://doi.org/10.1016/0022-5096(89)90002-1
  32. D.R. Metzger, R.G. Sauve, A Self-induced Stress Model for Simulating Hydride Formation at Flaws, American Society of Mechanical Engineers, New York, NY (United States), 1996.
  33. J. Lufrano, P. Sofronis, Micromechanics of hydride formation and cracking in zirconium alloys, Comput. Model. Eng. Sci. 1 (2) (2000) 119-131.
  34. J. Lufrano, P. Sofronis, H.K. Birnbaum, Elastoplastically accommodated hydride formation and embrittlement, J. Mech. Phys. Solid. 46 (9) (1998) 1497-1520. https://doi.org/10.1016/S0022-5096(98)00054-4
  35. J. Lufrano, P. Sofronis, H.K. Birnbaum, Modeling of hydrogen transport and elastically accommodated hydride formation near a crack tip, J. Mech. Phys. Solid. 44 (2) (1996) 179-205. https://doi.org/10.1016/0022-5096(95)00075-5
  36. A.G. Varias, A.R. Massih, Hydride-induced embrittlement and fracture in metalsdeffect of stress and temperature distribution, J. Mech. Phys. Solid. 50 (7) (2002) 1469-1510. https://doi.org/10.1016/S0022-5096(01)00117-X
  37. A.G. Varias, A.R. Massih, Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients, J. Nucl. Mater. 279 (2) (2000) 273-285. https://doi.org/10.1016/S0022-3115(99)00286-X
  38. A.G. Varias, J.L. Feng, Simulation of hydride-induced steady-state crack growth in metals-Part I: growth near hydrogen chemical equilibrium, Comput. Mech. 34 (5) (2004) 339-356. https://doi.org/10.1007/s00466-004-0578-9
  39. X.Q. Ma, S.Q. Shi, C.H. Woo, et al., The phase field model for hydrogen diffusion and ${\gamma}$-hydride precipitation in zirconium under non-uniformly applied stress, Mech. Mater. 38 (1) (2006) 3-10. https://doi.org/10.1016/j.mechmat.2005.05.005
  40. X.H. Guo, S.Q. Shi, Q.M. Zhang, et al., An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part I: smooth specimen, J. Nucl. Mater. 378 (1) (2008) 110-119. https://doi.org/10.1016/j.jnucmat.2008.05.008
  41. X.H. Guo, S.Q. Shi, Q.M. Zhang, et al., An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part II: specimen with flaws, J. Nucl. Mater. 378 (1) (2008) 120-125. https://doi.org/10.1016/j.jnucmat.2008.05.006
  42. X. Gong, Y. Zhao, S. Ding, A new method to simulate the micro-thermomechanical behaviors evolution in dispersion nuclear fuel elements, Mech. Mater. 77 (2014) 14-27. https://doi.org/10.1016/j.mechmat.2014.06.004
  43. M.P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking, Springer Science & Business Media, 2012.
  44. Jingyu Zhang, et al., A theoretical model for delayed hydride cracking velocity considering the temperature history and temperature gradients, Nucl. Mater. Energy 16 (2018) 95-107. https://doi.org/10.1016/j.nme.2018.06.009