References
- L.J. Siefken, E.W. Coryell, E.A. Harvego, et al., MATPRO-A Library of Materials Properties for Light-water-reactor Accident Analysis. Idaho Falls, Idaho National Engineering and Environmental Laboratory, 2001.
- P. Shewmon, Diffusion in Solids. The Minerals, Metals & Materials Society, Diffusion in Solids, second ed., Retroactive Coverage, United States), 1989, p. 246, 1989.
-
C.E. Coleman, D. Hardie, The hydrogen embrittlement of
${\alpha}$ -zirconium-a review, J. Less Common Met. 11 (3) (1966) 168-185. https://doi.org/10.1016/0022-5088(66)90003-8 - L.O. Jernkvist, A.R. Massih, Multi-field modelling of hydride forming metals. Part I: model formulation and validation, Comput. Mater. Sci. 85 (2014) 363-382. https://doi.org/10.1016/j.commatsci.2013.11.034
- C.E. Coleman, Cracking of hydride-forming metals and alloys, in: Comprehensive Structural Integrity, 6, 2003, pp. 103-161.
- M.P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking, Springer Science & Business Media, 2012.
- C.K. Chao, K.C. Yang, C.C. Tseng, Rupture of spent fuel Zircaloy cladding in dry storage due to delayed hydride cracking, Nucl. Eng. Des. 238 (1) (2008) 124-129. https://doi.org/10.1016/j.nucengdes.2007.06.005
- C.L. Briant, Z.F. Wang, N. Chollocoop, Hydrogen embrittlement of commercial purity titanium, Corrosion Sci. 44 (8) (2002) 1875-1888. https://doi.org/10.1016/S0010-938X(01)00159-7
- A.G. Varias, J.L. Feng, Simulation of hydride-induced steady-state crack growth in metalsePart I: growth near hydrogen chemical equilibrium, Comput. Mech. 34 (5) (2004) 339-356. https://doi.org/10.1007/s00466-004-0578-9
- S.Q. Shi, M.P. Puls, Dependence of the threshold stress intensity factor on hydrogen concentration during delayed hydride cracking in zirconium alloys, J. Nucl. Mater. 218 (1) (1995) 30-36. https://doi.org/10.1016/0022-3115(94)00368-8
- E. Smith, Threshold stress criterion for delayed hydride crack initiation at a blunt notch in zirconium alloys, Int. J. Pres. Ves. Pip. 68 (1) (1996) 53-61. https://doi.org/10.1016/0308-0161(95)00039-9
- K.S. Chan, A micromechanical model for predicting hydride embrittlement in nuclear fuel cladding material, J. Nucl. Mater. 227 (3) (1996) 220-236. https://doi.org/10.1016/0022-3115(95)00160-3
- K. Une, S. Ishimoto, Y. Etoh, et al., The terminal solid solubility of hydrogen in irradiated Zircaloy-2 and microscopic modeling of hydride behavior, J. Nucl. Mater. 389 (1) (2009) 127-136. https://doi.org/10.1016/j.jnucmat.2009.01.017
- A.T. Motta, L.Q. Chen, Hydride formation in zirconium alloys, JOM (J. Occup. Med.) 64 (12) (2012) 1403-1408.
- J.A. Szpunar, W. Qin, H. Li, et al., Roles of texture in controlling oxidation, hydrogen ingress and hydride formation in Zr alloys, J. Nucl. Mater. 427 (1) (2012) 343-349. https://doi.org/10.1016/j.jnucmat.2012.05.005
- C. Sun, J. Tan, et al., Critical temperature of delayed hydride cracking in N-18 Zircaloy, Acta Metall. Sin. 45 (5) (2009) 541-546. https://doi.org/10.3321/j.issn:0412-1961.2009.05.005
- W.J. Zhao, Development of new nuclear cladding in French PWR, Nucl. Power Eng. 21 (3) (2000) 278-284. https://doi.org/10.3969/j.issn.0258-0926.2000.03.019
- Y. Gou, Y. Li, Y. Liu, et al., Evaluation of a delayed hydride cracking in Zr-2.5 Nb CANDU and RBMK pressure tubes, Mater. Des. 30 (4) (2009) 1231-1235. https://doi.org/10.1016/j.matdes.2008.06.011
- M.D. Pandey, M. Wang, G.A. Bickel, A probabilistic approach to update lower bound threshold stress intensity factor (K IH) for delayed hydride cracking, Nucl. Eng. Des. 240 (10) (2010) 2682-2690. https://doi.org/10.1016/j.nucengdes.2010.05.037
- A. Zielinski, S. Sobieszczyk, Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications, Int. J. Hydrogen Energy 36 (14) (2011) 8619-8629. https://doi.org/10.1016/j.ijhydene.2011.04.002
- M.D. Pandey, D.D. Radford, A statistical approach to the prediction of pressure tube fracture toughness, Nucl. Eng. Des. 238 (12) (2008) 3218-3226. https://doi.org/10.1016/j.nucengdes.2008.07.016
- J.I. Mieza, G.L. Vigna, G. Domizzi, Evaluation of variables affecting crack propagation by Delayed Hydride Cracking in Zr-2.5 Nb with different heat treatments, J. Nucl. Mater. 411 (1) (2011) 150-159. https://doi.org/10.1016/j.jnucmat.2011.01.101
- L.O. Jernkvist, Multi-field modelling of hydride forming metals Part I: model formation and validation, Comput. Mater. Sci. 85 (2014) 383-401. https://doi.org/10.1016/j.commatsci.2013.11.035
- N. Hashimoto, T.S. Byun, K. Farrell, et al., Deformation microstructure of neutron-irradiated pure polycrystalline metals, J. Nucl. Mater. 329 (2004) 947-952. https://doi.org/10.1016/j.jnucmat.2004.04.063
- E.R. Bradley, G.P. Sabol, Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM, 1996.
- A.M. Garde, G.P. Smith, R.C. Pirek, Effects of Hydride Precipitate Localization and Neutron Fluence on the Ductility of Irradiated Zircaloy-4//Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM International, 1996.
- F. Yunchang, D.A. Koss, The influence of multiaxial states of stress on the hydrogen embrittlement of zirconium alloy sheet, Metall. Trans. A 16 (4) (1985) 675-681. https://doi.org/10.1007/BF02814242
- J.H. Huang, S.P. Huang, Effect of hydrogen contents on the mechanical properties of Zircaloy-4, J. Nucl. Mater. 208 (1) (1994) 166-179. https://doi.org/10.1016/0022-3115(94)90208-9
- G.P. Marino, HYDIZ, A 2-dimensonal computer program for migration of interstitial solutes of finite solubility in a thermal gradient (LWBR Development Program), Bettis Atomic Power Lab., Pittsburgh, PA (USA), 1974.
- J. Freund, A Model for Thermal Diffusion of Hydrogen in Zirconium Alloys, Helsinki University of Technology, 1992.
- P. Sofronis, R.M. McMeeking, Numerical analysis of hydrogen transport near a blunting crack tip, J. Mech. Phys. Solid. 37 (3) (1989) 317-350. https://doi.org/10.1016/0022-5096(89)90002-1
- D.R. Metzger, R.G. Sauve, A Self-induced Stress Model for Simulating Hydride Formation at Flaws, American Society of Mechanical Engineers, New York, NY (United States), 1996.
- J. Lufrano, P. Sofronis, Micromechanics of hydride formation and cracking in zirconium alloys, Comput. Model. Eng. Sci. 1 (2) (2000) 119-131.
- J. Lufrano, P. Sofronis, H.K. Birnbaum, Elastoplastically accommodated hydride formation and embrittlement, J. Mech. Phys. Solid. 46 (9) (1998) 1497-1520. https://doi.org/10.1016/S0022-5096(98)00054-4
- J. Lufrano, P. Sofronis, H.K. Birnbaum, Modeling of hydrogen transport and elastically accommodated hydride formation near a crack tip, J. Mech. Phys. Solid. 44 (2) (1996) 179-205. https://doi.org/10.1016/0022-5096(95)00075-5
- A.G. Varias, A.R. Massih, Hydride-induced embrittlement and fracture in metalsdeffect of stress and temperature distribution, J. Mech. Phys. Solid. 50 (7) (2002) 1469-1510. https://doi.org/10.1016/S0022-5096(01)00117-X
- A.G. Varias, A.R. Massih, Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients, J. Nucl. Mater. 279 (2) (2000) 273-285. https://doi.org/10.1016/S0022-3115(99)00286-X
- A.G. Varias, J.L. Feng, Simulation of hydride-induced steady-state crack growth in metals-Part I: growth near hydrogen chemical equilibrium, Comput. Mech. 34 (5) (2004) 339-356. https://doi.org/10.1007/s00466-004-0578-9
-
X.Q. Ma, S.Q. Shi, C.H. Woo, et al., The phase field model for hydrogen diffusion and
${\gamma}$ -hydride precipitation in zirconium under non-uniformly applied stress, Mech. Mater. 38 (1) (2006) 3-10. https://doi.org/10.1016/j.mechmat.2005.05.005 - X.H. Guo, S.Q. Shi, Q.M. Zhang, et al., An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part I: smooth specimen, J. Nucl. Mater. 378 (1) (2008) 110-119. https://doi.org/10.1016/j.jnucmat.2008.05.008
- X.H. Guo, S.Q. Shi, Q.M. Zhang, et al., An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part II: specimen with flaws, J. Nucl. Mater. 378 (1) (2008) 120-125. https://doi.org/10.1016/j.jnucmat.2008.05.006
- X. Gong, Y. Zhao, S. Ding, A new method to simulate the micro-thermomechanical behaviors evolution in dispersion nuclear fuel elements, Mech. Mater. 77 (2014) 14-27. https://doi.org/10.1016/j.mechmat.2014.06.004
- M.P. Puls, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking, Springer Science & Business Media, 2012.
- Jingyu Zhang, et al., A theoretical model for delayed hydride cracking velocity considering the temperature history and temperature gradients, Nucl. Mater. Energy 16 (2018) 95-107. https://doi.org/10.1016/j.nme.2018.06.009